SOLAR PANEL DAMAGE IDENTIFICATION USING TENSORFLOW LITE

By

Garrick D. Muncie

Abdul Ofoli Raga Ahmed

UC Foundation Professor Associate Professor of
of Electrical Engineering Electrical Engineering

(Chair) (Committee Member)

Donald R Reising
Guerry and UC Foundation Associate
Professor of Electrical Engineering

(Committee Member)

SOLAR PANEL DAMAGE IDENTIFICATION USING TENSORFLOW LITE

By

Garrick D. Muncie

A Thesis Submitted to the Faculty of the University of
Tennessee at Chattanooga in Partial
Fulfillment of the Requirements of the Degree
Of Master of Science in Engineering

The University of Tennessee at Chattanooga
Chattanooga, Tennessee

August 2024

ABSTRACT

The number of utility-scale PV installations is rising, with a power capacity of 12.5
Gigawatts installed in 2021, 10.4 in 2022, and an estimated 24 Gigawatts installed in 2023 [1].
With larger-scale installations, quicker ways of identifying and locating damaged PV arrays are
needed. The solution presented in this thesis is to use drones to capture aerial photos and
TensorFlow-Lite and Keras deep learning methods to determine if a panel has defects, such as
debris, cracked panels, and hotspots. The model features an execution time of 0.185 seconds
per picture. In addition, the model will run on an embedded system with a relatively low impact
on power consumption, minimizing the reduction of flight time. The Raspberry Pi has an
approximate 0.1-minute effect on flight time while idling and with the worst-case scenario of

affecting flight time by approximately two minutes if left running for the entire flight.

DEDICATION

| would like to dedicate this thesis to my loving family, who have pushed me to better
myself throughout the years. | want to give a special callout to all my grandparents, who were
always there for me and pushed me to explore the world, and my loving girlfriend, who had to
put up with me while | furiously worked my way through my master's degree. It also convinced

me not to give up and to keep pushing through while | did school and work.

ACKNOWLEDGMENTS

I would like to express my thanks to Dr. Ofoli for his guidance and the opportunity to
work on this endeavor. Dr. Ahmed and Dr. Reising, thank you for your guidance throughout the
year and for serving on the thesis committee on the short turnaround of this venture. The
SMART Scholarship and Arnold Air Force Base for giving me the opportunity to work and be a

student at the same time.

TABLE OF CONTENTS

ABSTRAGCT ..ottt ettt et e s testeeteee e et ae s e s te st stesbeens et aesaesees e s seesteassanssesbensennsesenss saeensesssenssansans iii

DEDICATION ...ttt ee ettt e e e e et e e e e e e e s e etaat e e eeeeeeeessssbaeaeeaeeaaaasssaaaesaeeeesasssseaseaesasaannssranaeens iv

ACKNOWLEDGEMENTSeetitiie ettt e e ee et e e e e e e ettt ae e e e e e s s s antraeeeeeesesnnnanneneaeeeassnnsssnneeeneens v

I I T i 7Y = I8 SR viii

LIST OF FIGURESeeteeeiiiiectieteees e s ettt e e e e e e ettt ee e e e e e s s taaa e e eee e s e snnnnseeeeeesessannssnaaeeesessansnsnnnneeens ix

LIST OF ABBREVIATIONScceeeteeeei ettt et e ettt e e e e e s ste e ee s e e s e s ananaeeee s e e s nnaneaeeeeesennnnnennneeaenens X

LIST OF SYIMBOLSoeeiiiiie e cteeeee e ee sttt e e e e et e e e e e s st e e eeeeeesassassaneeeeeeesannsseneeeeessannnnsnnnneeens Xi
CHAPTER

l. INTRODUCGTIONetttieieeiee ettt e e e e s eettreee s e e e e e snaete e e e e e e e s ssasenteeeeessessnnnssnnneaeeessnsnnes 1

RESEAICh QUESTIONS. .. ceeiiiii et e e e e s et ae e e e e e e s s snraeaeeeeeeennen 2

Il. BACKGROUNDciiitiiiieie ettt e ettt e e e e e st e e e e e e e e sbaseaeeesaeeennnbeseeaeaaseennne 3

NEUIAl NETWOIKSevviiieieeieece ettt ee e e e e e e et ae e e e e e e rareeeeeeeeeenaes 3

DEEP LEAINING ..ttt ettt et eetee et eteeeteeeteeeeeeeeeteseeeeeeeaaataaaaaeaaees 3

Convolutional Neural NEtWOIKSuueeieeiie ittt e 4

1Y To] T 11T V=Y Y B AU RRPRTN 5

=14 201 La Vo] [=4V AP PPRR 7

PV DamMage TYPOS .euuueeeinueieinieeiitiieieettttieteeteeeeeetteeeeeteetetteeteteerteeseseeseesesaeeaeeeeeeeeeeeeeees 8

K-Fold Cross Validation.........cccuuiiiieiii ettt et e e e e 9

Il. RELATED WORK ...ttt ettt e e et ee e e e e e e e e et aeeee e e e eennreaaeneaaeaan 11

Deep Learning with Solar Panel Damage........cccueeeveriieieiniieee it srieee s seneeesaes 11

Deep Learning on Edge Devices and Microcontrollerseeevvveeeeeveeeieveneeeeennnnn, 13

Vi

Deep Learning with Unmanned Aerial VEhiIclesuuuveeeeeveveiiiiiiieiiiiieiieeeeeeeeee, 14

SUMMATY OF LITEIatUIE ..uvvvveiiiiieeeiteeeeee et erbree e e e s e naraaee s 17

V. METHODOLOGYeviiiieiiee e e cciieeee e e s esetrtree e e e s e e sear e e e e e e s s e snntsaaeeeeeeessnssssnnneeesans 19

Model IMPlEMENTALIONuuuiiiii e rrrerreererererresrerssseeeeee 19

DAtaSET i 19

=T o] o ol =11 [oV = RN 24

Neural Network Construction — TensorFloOwcccceeeeeeicciiiieeee e, 25

TensorFIow Model TESTING......ccvvriiiiiiiiiiee e 28

TENSOIFIOW-LITE coceeeeeeeeee e 29

HardWare TarZetSuuiiiuriie et eiiee ettt st e e s staae s s e stae e e e s bbe e e e saseaaessnnns 30

R T o] Y= o oV o PP TPR 31

NVIdia JEtSON NANO ...ccceeieiieeee e e e e 31

Model Implementation 0N HardWare.........ccueeieivieiiniiiiee i 33

Model Improvement and Additional Evaluationccccceveviriiieiinniieeiinieeeenns 33

V. RESULTS ettt ettt e e e e e et e e e e e e e eeeeta bt be e e e e e e eeentaaaaeeaaesesannrraaaeaaaanas 35

Model Testing and Creationeeviviieeeiiiiiie e s 35

Analysis of Model Implementation on Hardware.........ccocoveeiiniieeninieee e 38

(OF: [0 =] o= T 1= £ TSP UPPPPPIRt 43

T Td o L T2 o [T U USRS U UP PSRRI 47

K-fold Validation and Model Adjustmentsccoovvvvveeeeeieiiniiiieeeeee e 48

VI. FUTURE WORK ...ttt e e stree e e e e s st ae e e e e e s et anae e e e e sennnnnnneaeaanns 56

VII. CONCLUSION ...ttt ettt e s erterree e e e ee e sre e e e e s e e s sanae e e e e ee s e s s nrsanaeeeaeseennnnnnnnees 58

REFERENGCESeeeeteteeee ettt e e e s e ettt e e e e s e e e e ee e s e sanna e aaeeeeeessansnsanneeeeeesaansnnneeeaeeessansnnnnneens 59
APPENDIX

A, SetUup RAsPhErry Pl 65

T =] (U1 o 1=y Yo] o A\ - [Lo TSRSt 73

LY PR 87

Vii

LIST OF TABLES

3.1 Literature COMPariSON ..o e e e e e 19
4.1 Number of EaCh IMage TYPE c..uveiiiiiiiiieettee ettt e e s e e e s abae e e s sbee e s sanes 22
5.1 Model Block Layer BreakadOWN.......cooeeeeiieeieeiieieeeeeieeeeeiesee e s sec s s a e an b annnnas 37
5.2 Comparison of Model Tests based on Epoch and Watermark Removal..........ccccceevvveeennnenn. 38
5.3 Predict N _Sort.py Time TrialS. .ccieeeieeeeeeeieieieiee e bbb bbb s b abebaressbessssesrasssresseseees 42
5.4 Max Power Usage While Predicting........oooeieeiiie e 43
5.5 Breakdown of Mislabeled IMages.......coccuvriiiieieiiiiiiiieee ettt eeeeraber e e e e setraaae e e e e s 44
5.6 Picture and SOrt Time Trialscooouiiiieeeeee ettt 46
5.7 Max Power Usage Single Image Capture and INfErence.......cccvveeveeeieiiciiieveeeeeeeeeireeeeeeeeennn 47
5.8 Estimated Flight TimEsS....ccooiiiii et a s aaarananes 48
5.9 K-FOIA RESUILS ..ot st enn e s eane 53
5.10 Confusion Matrix: DUSTY and GOOd..........eeeiieiiiiiiiiiiieiieeeeiiiirreeeee e eeeerreeee e e e esesbarreeeeeseeenns 54
5.11 Confusion Matrix: Broken Glass, Dusty, and GOOd..........ccccuvereieieeiininiieeeeeeeeeeirrreeeeeeeeeennns 54
5.12 Confusion Matrix: Broken Glass, Dusty, Good, and HOtSPOtScccuveerereeeeininrreeeeeeeeeeinnns 55

viii

LIST OF FIGURES

2.1 lllustration of CNN with a Single HIdden Layer........cceiviiiiiiiiie e 5
2.2 MobileNetV2 Architecture SKETChc.cuei i e 7
2.3 K-fold Cross-Validation k Equals FOUr SKETChcc.uvvviviiiiiiiiiiiieeec e 11
4.1 Outliers Removed From Datasel........cueiiiiiiiiiiiiieeiie ettt s 22
4.2 Collection Of SAMPIE IMAEES ...ccivccireeiiie ettt ee et ee e e s saaabeaae e s e eeseassraneeeeeas 23
4.3 Skewed IMage EXamMPIE.... e ——— 25
4.4 Normalization Of AN IMae....cccuiiiiiiiiieeecee et s e e s s sbrae e s esataeeenans 26
4.51Mage to be MOdEIEA ... ——————— 27
I N = Lo Yo Q@ L (=l o 1= 11 4= [o TS 28
4.7 Program Flow for Model Creation and TESEINGccccuvieiiriiiieiiiiiee et sieee e 29
4.8 TensorFIow vs. TENSOrFIOW Lite.......ccoiiiiiiiiiiiiiiecciie e 31
4.9 RASPDEITY Pi 4 DEV UNIt .uviiiiiiiiiiiiiiiiee ettt sttt s e s e s s saaee s e s ate e e e sanaaeessaas 32
4.10 Jetson NANO DEV Kitccuiiiiiiiiiiiiiiiei ittt re e e 33
5.1 Dusty Solar Panel Deemed GOOdccooeieeeiiieie e b n e aannanes 40
5.2 Block Diagram of Predict_IN_SOMt.pY ..cccuueiiiiiieee ittt 41
5.3 Programming Block Diagram for caplmg_Predic_N_SOrt.py....ccccccvveeeinieeeiniiieeiniieeee e 45
5.4 Ten Fold Cross Validation of the model............cooiiiiiiiiiiie e 49
5.5 Example of Aerial IMages REMOVED.........cvuveeiiiiiiiiiiiiieieee e seerbrre e e e e e e essbrareeeeeeeenn 51

LIST OF ABBREVIATIONS

PV, Photo Voltaic

UAV, Unmanned Aerial Vehicle
GPU, Graphic Processing Unit

CNN, Convolutional Neural Network
GPS, Global Positioning System

UV, Ultraviolet

EL, Electroluminescence

IR, Infrared

RelLU, Rectified Linear Unit

VGG16, Visual Geometry Group 16
MCC, Matthews Correlation Coefficient
ResNet, Residual Neural Network
YOLO, You Only Look Once

SGD, Stochastic Gradient Descent

LIST OF SYMBOLS

>, Summation Symbol

Xi

CHAPTER |

INTRODUCTION

With the continuous growth of residential and utility-scale photovoltaic (PV)
sources (solar panels), it is of growing importance for utilities to gain an increased
understanding of solar panels and how the PV’s status affects the utility system[2]. The
number of utility-scale PV installations is rising, with a power capacity of 12.5 Gigawatts
installed in 2021, 10.4 in 2022, and an estimated 24 Gigawatts installed in 2023 [1]. This
growth requires improvements to current damage collection and repair diagnostics
solutions and new solutions to diagnose issues. Current solutions in machine learning
focus on certain subsets of damage collection and repair diagnostics [3-25]. The solution
historically has been based on different photo types, electroluminescence, Infrared
Imagery, still images, or a combination. These photos have been taken from unmanned
aerial vehicles (UAV) or personnel. The deep learning on these images has happened
mainly with off-site computing [4-18, 24, 26-30]. However, a currently sought-after
solution is flying over a utility field with a UAV, taking pictures, Geo-tagging its location
with Global Positioning Systems (GPS), and processing the image with a machine
learning neural network. The images are then classified into areas for a technician to
understand what is wrong with the panel and send them on their way to fix the

identified panel. This has been done to some varying degrees [2-30]. A review of the
1

literature reveals that few solutions seem to cover a large span of images and damage

types and compare between different devices. This thesis seeks to close this gap.

Research Questions
In this thesis, the following research questions were asked:
e With the wide array of PV damage types, is there a way to classify types of
damage with a single model?
e What is the power consumption differences between different edge devices?
(such as a Raspberry Pi 4 or Nvidia Jetson Nano)

o Will power consumption differences affect drone flight times?

CHAPTER Il

BACKGROUND

Neural Networks

Neural networks represent a class of machine learning models loosely inspired by
studies about the central nervous system. Each Neural Network comprises several
interconnected "neurons" arranged into "layers." These neurons pass information messages to
other neurons in the next layer. The first studies started in the early 1950s and have grown
exponentially in recent years [31]. At its basic premise, machine learning is broken up into two
subsets: unsupervised and supervised machine learning. In unsupervised learning, where there
is no known output, the learning algorithm is given input data and is asked to extract knowledge
from said data [32]. Supervised learning is one of the most common and successful types of
machine learning. It is used whenever a given input is used to predict. For supervised learning
algorithms to work, they require example inputs together with corresponding example outputs.

[32].

Deep Learning
Deep learning is currently one of the most popular approaches to machine learning. Deep
learning started getting its name when these types of neural networks utilized three to five layers.

Research on the nature of deep learning has existed for quite some time. However, the complexity

3

and computational power required of deep learning hindered its adoption and application until
the mid-2000s. With the development of advanced processing units and large exponential
increases in data, there has been a resurgence in deep learning research. These advancements

have now allowed for networks with more than 200 layers [31,33].

Convolutional Neural Networks

Convolutional neural networks (CNNs) have been applied to visual tasks since the late
1980s. However, despite a few scattered applications, they were dormant until the mid-2000s
when developments in computing power and the advent of large amounts of labeled data,
supplemented by improved algorithms, contributed to their advancement and brought them to
the forefront of a neural network renaissance that has seen rapid progression since 2012 [34].
CNNs consist of input, hidden, and output layers. The hidden layers are added to the network
because the additional neurons can facilitate learning more complex patterns in the training
data. They are called hidden because they do not directly connect with the input or the output
layer of the Neural Network [35]. Hidden layers allow the model to calculate more coefficients
(weights) for the model to learn [36]. These weights are numerical values that determine the
strength of a connection or signal between nodes. The value of these weights is adjusted in the
training phase of a Neural Network and ultimately helps define the output of the predictive
system. Figure 2.1 provides a representative illustration of a CNN comprised of an input, a single

hidden layer, and an output layer.

Input Hidden Layer Output

Figure 2.1

Illustration of CNN with a Single Hidden Layer

There are many different architectures and models from which to build a CNN, and various
methods are mentioned in this paper, such as You Only Look Once (YOLO), Residual Networks

(ResNets), and Very Deep Convolutional Networks (VGG). However, this paper focuses on the

MobileNetV2 architecture.

MobileNetV2

The MobileNetV2 architecture is based on an inverted residual structure where the
input and output of the residual block are thin bottleneck layers opposite to traditional residual
models, which use expanded representations in the input. MobileNetV2 uses lightweight depth-

wise convolutions to filter features in the intermediate expansion layer [2]. This allows for a
5

smaller model size that can be created in a shorter time span while also allowing the achieved
model accuracy to be competitive with more computationally expensive models [37].
MobileNet uses a bottleneck structure to reduce the computational cost by using 1x1
convolutions to reduce the number of channels before applying depth-wise separable
convolutions [37,38]. A MobileNet adds additional layers before the classifier layer in typical
CNNs. These new core layers are built upon separate depth-wise filters. These depth-wise filters
are done through depth-wise convolution, allowing the model to shrink the hyperparameter's
width multiplier and resolution multipliers [38,51]. The layered architecture of MobileNetV2 is

shown in Figure 2.2.

(]
2 o
B Block 1 Layer g g_,-
E Block 2 2 UE

Layer &
nntt B Block n Layer E -".';
input image nn

oY
n i1

Preprocessing -,

==>_ |:> Q |:> 2 'bi '$ to Classifer

'

LY

-

Figure 2.2

MobileNetV2 Architecture Sketch

Terminology

Some basic definitions of Machine Learning terms shall be relayed here.

Model: The result of training an algorithm based on data supplied. The model is used to
make inferences based on newly inputted data.

Batch size: number of samples fed into the network algorithm at a time during model
training.

Epoch: One epoch is a single pass of batch data through the algorithm (neural network).
After each pass, depending on the optimizer, weights to the algorithm will be adjusted
for the next pass.

Optimizer: An algorithm to determine weight updates to the learning rates of the model
during training. Traditionally, this is done using some form of stochastic gradient descent
(SGD) procedure. However, newer algorithms like Adam use a combination of gradient
algorithms and other methods. For instance, Adam uses the Adaptive Gradient
Algorithm and Root Mean Square Propagation to determine weights effectively in deep
learning models.

Categorical Cross-entropy: Objective function of Keras, which defines a multiclass
logarithmic loss. This compares the distribution of the predictions with the true
distribution, with the probability of the true class set to a one and zero for other classes.
If the true class is c and the prediction is y, then the categorical cross-entropy is defined

as [19]:

L(c,p) =- 5 ciln(pi)

e Accuracy: The metric to evaluate the training of the model. It's the proportion of correct
predictions concerning the total number of predictions.

e Precision: The metric used to evaluate the training of the model is the proportion of
correct positive predictions concerning the number of correct and incorrect positive
predictions.

e Recall: The metric to evaluate the training of the model is the proportion of correct
positive predictions concerning the actual number of positive predictions

e F1 Score: The metric to evaluate the training of the model. It's the harmonic mean of the
precision and recall values.

e Softmax: Layer type takes the feature as input and calculates the probabilities as outputs
for each class. Then, select the highest probability score.

e Rectified Linear Unit (ReLU) Activation: a piecewise linear function that will output the
input directly if the input is positive; else, it will output zero. Thus, if the input is
negative, it gets converted to zero, and the inputted neuron does not get activated. ReLU

is the default activation function for most neural networks.

PV Damage Types
There are many common types of PV damage; however, some more common effects are
hotspots and broken glass [39]. Dust covering the PV and microcracks are also damage types

affecting energy production.

e Hotspots: Defects that form small spots that dissipate the generated current in the form

of heat [3].

e Dust: Dust is not just sand and dust particles; this can also be related to fallen tree limbs
or any other obstruction that forms an obstruction between the panel and the Sun.

e Microcracks: tiny cracks that cannot be seen with the human eye.

e Broken Glass: As the name suggests, the PV's glass panel is damaged, preventing it from

functioning properly.

K-Fold Cross Validation

With one test on model data, the algorithm could get lucky with the results and have great
data; k-fold cross-validation allows one to train and evaluate a model multiple times to ensure
the model acts as expected. The k is a variable that represents how many splits and tests one will
do on the model's dataset. In general, the data set is split into k "folds." One of the folds will be
selected as the validation dataset, while the remaining will become the training dataset. The
model will be evaluated and trained on this data, and an evaluation score will be created using
the validation dataset. Since this is a method to evaluate a model design, not a particular training,
the fold data will report the average performance of the model [64]. Figure 2.3 shows a visual

representation of the K-fold process for k, which equals four in this case.

Training Data Set

Fold 1 I I Fold 2 I Fold 3 Fold 4

I Fold 2 I Fold 3 Fold 4 —
Fold 1 I Fold 3 Fold 4 —
Fold 1 I I Fold 2 I Fold 4 —

I Test Data

Figure 2.3

K-fold Cross-Validation k Equals Four Sketch

CHAPTER 11l

RELATED WORK

Chapter 3 explores works that have already been conducted that hold similar ground to
image detection with deep learning. The following subsections discuss solutions and results of

other lightweight machine learning algorithms.

Deep Learning with Solar Panel Damage

There are already a few approaches to solar panel damage with deep learning [3-
29,40,41]. The authors of [5] used two databases organized by brand, an ambiguous damaged,
and a good dataset for classifiers. One of these datasets was ten "mock" residential images,
while the other dataset was 60,000 images. They used a Matthews Correlation Coefficient
(MCC) to determine the accuracy and ran two experiments. First was a pre-trained approach
using a CNN, where they had a 94.7% MCC accuracy. After this, they started retraining the CNN
to achieve an approximate accuracy of 100% using the training data. The authors of [6] looked
at damage to solar panels using EL images. They focused on intact panels, cracked, had intra-cell
damage, solder issues, and oxygen bubbles. Their dataset consisted of 19,228 EL images
comprised of 640x512 pixels. Then, the results of ResNet models (ResNet18,50,152) and a YOLO
model were compared. The authors of [6] achieved an F1 score of 0.83 on ResNet18 and a 0.78

F1 score on YOLO. For the final model, ResNet was chosen based on this score. The authors of
11

[7] used MobileNetV1 to achieve an accuracy of 88.29% when classifying 45,469 augmented
images with the following classes: clean, dust, cement, bird droppings, cracks, snow, soil, and
shadows. Before augmentation, they had a total of 4,110 images. The authors of [27,29]
reference issues in gathering images of damaged PVs as there is not much public data available,
and both used image augmentation to generate results. The authors of [27] collected a total of
350 images and augmented them to create a total of approximately 60,000 images. Using
TensorFlow and homemade code titled SolarDiagnostics, they classified shaded, dust, snow, and
good PVs with an accuracy of 85.9%. Others, like [28], point out that a wide array of camera and
noncamera options are needed as conditions can result in areas where one option cannot be
used. They used EL and IR images to detect microcracks, dirt, hotspots, and bird droppings with
an accuracy of 99.8%. This was achieved using Kera's deep convolutional network, Visual
Geometry Group 16 (VGG16). The authors of [13] used 44 EL images augmented up to 2,624
images. The two classes used were good and defective. Using a VGG6-based CNN, the authors
of [13] created their model using cross-validation with a fold size of four. This resulted in an
average accuracy of 93.025%. The authors of [18] tested two different CNN's, a YOLOV4 and a
ResNet, for model creation. These models were trained on IR images. They used a dataset of
3,582 augmented 640x512 pixel images to determine if a panel had hit a segmentation
threshold or had a hotspot. The YOLOv4 achieved an average accuracy of 99.01%, while the
ResNet model achieved an accuracy of 99.23%. The authors of [34] specifically use infrared to
identify cells with hot spots or areas with higher temperatures than other solar panel areas. In
contrast, the authors of [7,10,24] use a mix of traditional imagery and infrared images to classify

not only PV's. The dataset [24] used comprised 1,136 images before augmentation; each of
12

these images was converted down to 336x256 pixels and to greyscale before training on the
data. Ten classes were used: discoloration, delamination, corrosion, glass crack, IC failure,
hotspot, cell crack, permanent soiling, good, and back sheet damage. The authors of [24] used
multiple different models to train on the data, which resulted in 87.3% accuracy. However, no
loss data was presented. Authors of [15] used Tensorflow and Keras to build their CNNs and
tracked the accuracy with different model optimizers. With 600 IR images, the authors of [15]
achieved accuracies of up to 98.93% with SGD and 94.52% with Adam on the IR images to
detect damage; they also claim that the model with the Adam optimizer could get close to 100%
at detecting hotspots. While the exact number of each image class was not identified, they had
the following categories: normal, dirt, vegetation, hot spot, multi-hot spot, open circuit, cell
crack, and DC box component. The authors of [24] had classifiers of clean, dust, cement,
shadow, bird droppings, crack, snow, and soil. Shadow-covered PVs have a total of 56 images,
the largest image class consisting of 1,204 images of dusty PVs, and a dataset comprised of
4,110 images in total. After this, they used image augmentation to generate a dataset of 45,469
images and achieved 94% accuracy with their proposed model. The authors of [25] had a
dataset of 1,100 images and three classes: normal, damaged, and dusty, achieving an accuracy

of 93.7% using an SGD optimizer. The image sizes and normalization process were not provided.

Deep Learning on Edge Devices and Microcontrollers
Deep learning on edge devices has seen a lot of attention in the last seven years. High-
performance model training is still mainly done on state-of-the-art computers due to resource

consumption [42]. However, the option of implementing and using trained models on much less
13

resource-intensive devices, such as microcontrollers and mobile devices [43] or even small GPUs
[42], is quite incentivizing. Deep learning on edge devices has seen large swaths of use cases,
from UAVs to many other applications. The authors of [22] designed a small CNN model using
Tensorflow-Lite and Keras to develop a real-time fault detection system for PVs. The authors of
[22] focused on five class labels: healthy, dirty, degraded, sand deposit, and overheated junction
box. They had 670 IR images that were augmented up to 5,786 images. The smallest image
count was "Overhead Junction Box" at 90 images. This was augmented up to 877 images. At the
same time, the largest image pool of 150 dirty images was augmented to 1,425 images. Running
their model on the Arduino Nano 33 BLE Sense, [22] achieved an accuracy of 94.8%. The
authors of [44] have an edge device (Raspberry Pi 4) that can discover anomalies that could be
malicious traffic on a network. The authors of [45] detail the challenges of developing edge
cases to train the model on the device instead of using a state-of-the-art computer, which may
be useful for updating the model on the fly. There are also methods to update and train a model

through over-the-air updates [26,45].

Deep Learning with Unmanned Aerial Vehicles

There are various applications for using Machine Learning devices while flying UAVs
(more commonly known as drones). This ranges from using still images to real-time image
detection to Multilabel object detection [4-25,46,47,48]. There are also more precise
applications like counting corn [40] or even determining cars via segmentation techniques. In
the case of PV analysis, the way these images are typically handled is a UAV will take pictures of

an area, then in some ways are transferred to a computer for classification [4-20]. For instance,
14

the authors of [8] used Bluetooth to transfer the images from a UAV to their CPU. The authors
of [20-23, 25, 46] have been able to do classification on an embedded system that is mounted
on a UAV. The authors of [11] used a K-means classifier on a dataset of 4,969 RGB images and
4,143 IR images taken from UAVs. The authors of [11] focused on whether there was a faulty
panel or if a panel was good, with an accuracy of 96.1%. The authors of [12] used UAVs to take
and transfer images over 4G. They had a dataset of 6 kinds of images: 100 encapsulant
delaminated, 100 encapsulant delaminated, 100 broken glass, 500 dust, 200 snail trail covered,
and 2,000 good images. Their model achieved an accuracy of 78.61%. The authors of [14] used a
dataset of 500 IR images, 63 of which had hotspots, 15 of which had bypass defects, and the
remainder of which were good. These images were taken at 640x512 pixels and were used to
form two classes, good and defective. Achieving a 98.47% with just a binary classifier. The
authors of [17] used a VGG16 CNN to detect if bird droppings were on PVs. About 1,000 640-by-
4380 pixel images were taken by UAVs to train this data. The authors of [17] did not break down
how many images were good and how many had bird droppings. The calculations of a
percentage of PVs had bird droppings from the zones the images were taken from. The number
of images per zone was not given. The authors of [19] look into using YOLOV3 as its CNN
classifier and apply it to two different datasets to see if they can get comparable results. The
first dataset consisted of 2,038 640x512 pixel IR images that looked to classify heated joints and
hotspots in PVs, while the second dataset consisted of 1,500 1,600x1,200 images. The second
dataset focused on soiling, strong soiling, raised panels, delamination, puddles, and bird
droppings. This dataset had a breakdown of 428 strong soiling images, 475 raised panels, 525

delaminated panels, 1060 soiling, 3403 puddles, and 4095 bird-dropping images. For both these
15

datasets, image augmentation was applied, though the number of images is not stated. In their
first dataset, an accuracy of 66.9% is achieved, while 68.5% is achieved with their second
dataset. The authors of [20] compared the performance of three different models designed on
the YOLOV3 classifier on different hardware targets. The use case used a UAV equipped with
onboard hardware to label the antenna, insulators, and vibration dampeners of power systems
in real-time. They focused on which device and optimized model would produce the most
efficient real-time data. They measured how many frames their hardware could process per
second. In the end, the authors of [20] determined the YOLOv3 optimized model on the Nvidia
Jetson AGX Xavier resulted in the best accuracy while processing fifty 288x288 pixel images per
second. The authors of [21] continue to follow the real-time approach using IR cameras to
detect cell, module, or panel faults. One-hundred and sixty-two images were used to train a
YOLOv3 model on a Nvidia Jetson TX2. A breakdown of 54 images shows the model and 36-
panel faults, and the rest show the device operating normally. Using these three classes, the
model achieved an overall accuracy of 95%. The authors of [23] were another IR-focused PV
expansion method that had 12 classes: cell damaged, multi-cell damage, crackling, diode
damage, multi-diode damage, hotspot, multi-hotspot, offline module, shadowing, spoiling,
vegetation, and good. The authors of [23] reference that most models up to the point of writing
had a dataset of a range from 110 to 900 IR images, so they acquired 20,000 IR image data sets.
This dataset had a wide range of images for each given type, as there were only 175 images for
the multi-diode damage, while single-cell damage had 1,877 images. Data augmentation was
used to increase the number of images, but the amount of this is not explained in the

document. However, the authors mention that the images are normalized to 40x24 pixels
16

before training. They also noted that for future models, it would be wise to augment some
images to solve for imbalanced classes of the model. The final model ended with an accuracy of
85.4%. The author of [46] used a real-time system using MobilenetV1 to determine if concrete
had been damaged to significant effect, having an approximate 95% accuracy on damage

detection, which has some very similar methods to what happens further in this paper.

Summary of Literature
Overall, most of these documents cover a portion of the work carried out in this thesis.
Table 3.1 compares what some of these documents cover versus this thesis. This thesis achieves

a power-efficient multi-image, damage classification model that is on board a UAV.

17

Table 3.1 Literature Comparison

Ref No K-Fold Multi | Single Model | Onboard Multiple Power
/Cross Image Classification | Device Usage
Validated | Type Comparison | (flight
Model time)

[27,13] X X

[15] X X X

[28,7,11,12,19,24] X X

[5,6,9,14,17,18, X

29]

[20] X X X

[21-23] X X

[24] X

[10] X X

[25] X X

Thesis X X X X X X

18

CHAPTER IV

METHODOLOGY

Model Implementation
Dataset

For this work, a mix of provided and internet-found images (using keywords broken,
cracked, microcracked, hotspot, dusty, solar panel, and PV) were used. The original dataset had
no qualifiers when gathering data. For instance, one of the internet-gathered datasets of
images was a set of "good" and "dusty" PV's from the image data set repository Kaggle [49,50].
Another dataset [49] contained a total of 2,562 images, 1,493 of which were deemed "clean"
while the other 1,069 were considered "dusty," though dusty appears to cover bird droppings
and other debris, not just dust. In contrast, the dataset provided by [50] contained 199 bird-
dropping, 202 clean, 220 dusty, 98 electrical damaged, and 66 physically damaged PV Images.
Both datasets contained images from a wide array of different angles. Since a UAV will not
always have a consistent image angle on PVs, it was thought that additional angles could help
the model recognize panels. However, the PV data from these datasets had a few perceived
abnormalities, such as people in photos, ads built into the photos, markings depicting the
damage, and watermarked images. Figure 4.1 depicts a few of these removed outliers. A model
was created with these abnormalities included and removed, with results shown in Table 5.2.

Different angles and aerial views were left since these would most likely be present from drone

19

images. Other online images provided "microcrack"” panels (which were captured with UV
Cameras), "hot spot" panels, and "broken glass" panels. Figure 4.2 shows an example of each
image category, and Table 4.1 shows the number of images after abnormalities were removed

and before augmentation.

20

Figure 4.1

Outliers Removed from Dataset

Table 4.1 Number of Each Image Type

Good Dusty Hotspot Broken Glass

Microcracked

1000 950 94 94

10

21

ek

Good398 Gooddl 03 Gooddd7
T T —

Good51E

o

Broken Gla

Hot Spots7d

2

Hot

Figure 4.2

Collection of Sample Images

22

The number of dataset images for the different types of damage varied. Thus, augmentation of
the image data pool was done to expand them. This augmenter code brought the image pool
for each datatype to 3,000 images. The augmenter code was created with the Augmenter

Python package and works as follows:

e Take an image from the base pool.

e Based on a probability, do at least one of the following: flip the image horizontally, flip
the image vertically, rotate the image a maximum of five degrees left or by a maximum
of ten degrees right, skew the image in one of twelve directions (Figure 4.3), and/or
zoom into the image by a minimum factor of 1.1X zoom or a maximum factor of 1.5X

zoom.

e Save the image into a new folder to be used for model training.

e Repeat the process until the desired sample size is reached.

A dataset of about 500 was initially used to speed up the process of original prototyping. These

data types were split in a 70:15:15 ratio for training, validation, and test datasets.

23

Ori

—1

gil Skewed

Figure 4.3

Skewed Image Example

Preprocessing
There was a wide array of image resolutions and sizes on which the model was to be
trained. The largest size being 5,472 x 3,080 pixels and the smallest size being 389 by 258 pixels.
To reduce model size and provide uniformity, all images were preprocessed. First, all images were
resized to a 224 x 224-pixel square. Distortion of the images was not factored in. After this, each
image was normalized on a scale from negative one to one. Figure 4.4 shows a normalized

image's basic input and output to the human eye.

24

MobileNet V2 |:>
Normalization

Figure 4.4

Normalization of an Image

Neural Network Construction — TensorFlow

The initial model was built upon TensorFlow version 2.8 code base using Keras. Keras
was used with TensorFlow since its primary purpose is to focus on debugging speed, code
elegance, conciseness, maintainability, and deplorability [56]. It is a useful interface with
TensorFlow and has many tool sets, allowing users to design different CNN models easily. For
the classification model, CNN MobileNetV2 is used. The Keras code base was used to implement
the MobileNetV2 normalization in the model. Since image classification methods are the target
use case, a two-dimensional convolutional layer (Conv2D) was used. The final model consists of
the following: an Input Layer, sixteen Block layers, a Dense layer, and an Output layer. Each of
the sixteen block layers is then broken up into subsections, which do various processes to help
the model determine classification and then pass the data to the next sublayer. Figure 4.5 and
Figure 4.6 show what one block of data can look like for a given image. This heatmap is a bit of

code that allows humans to visualize what features the model visualizes. There are five distinct
25

categories; thus, categorical labeling was used. The model will operate while using SoftMax

activation.

Figure 4.5

Image to be Modeled

26

Figure 4.6

Block One Heatmap

The Adam optimizer was used to create the model, and categorical cross entropy was used as

the objective function.

27

TensorFlow Model Testing

A set of programs were used to create and test the model, as shown in Figure 4.7.

Image
Dataset Chosen Model
Resizing/ E> - :
Normalization ini Model Testi
Augmentation :> Model Training odel Testing

Figure 4.7

Program Flow for Model Creation and Testing

The general model creation and training process started with a low epoch number of five and a
smaller image dataset (500 images). This was to prototype a model quickly and to start working
on a good set of programs that could interface with the resulting model. As stated earlier, the
image data was proportioned into three categories: 70% for training, 15% for validation, and
15% for testing. The model training code uses the training and validation data sets to create and
train the model. After one complete pass of the training dataset (an epoch), the model is
validated using the validation dataset. The model is updated based on the validation results,
and another epoch is run using the updated weight values to improve model classification

accuracy. For the prototyping, this process of adjusting epochs and training the model

28

continued until an accuracy of at least 80% was achieved. After prototyping, the goal was to
achieve an accuracy within the range of 90% and 95%. The model is stored for subsequent
testing once an accuracy between 90% and 95% is achieved. The model was tested using the
remaining test image data set and the SKlearn python library. The SKlearn library allowed the
model to collect new data and get the accuracy, precision, recall, and F1 scores based on a

supplied grand truth table. The output of this can be seen in Figure 4.8.

TensorFlow-Lite

After the TensorFlow model had been set up and had an acceptable accuracy of above
80%, this model was then converted into a TensorFlow Lite applicable model. TensorFlow Lite is
the mobile library for deploying models on mobile devices, microcontrollers, and other edge
devices [43]. This was done since TensorFlow Lite is better optimized for less powerful
hardware and to save on file space. Like the testing process for the TensorFlow model, both
programs achieved the desired accuracy value(s) and used the SKlearn Python library and a
ground truth table to calculate the numbers presented in Figure 4.8. There was no apparent hit
to the models, accuracy, precision, or recall values at the cost of converting to a Tensor Flow

Lite model.

29

Performance metrics for TF model trained for 100 epochs Performance metrics for TF Lite model trained for 100 epochs
on 2250 test images on 2250 test images
time to complete: 53.21101188659668 time to complete: 86.24805498123169
Confusion Matrix: Confusion Matrix:
[[447 3 o o @] [[447 3 © 0o @]
[06406 43 1 @] [0406 43 1 @]
[0101349 o @] [0101349 o0 @]

[6 106 2438 0] [e 106 2438 0]

[© © @ 0 450]] [© © o 0 450]]
Accuracy is: 0.9288888888888889 Accuracy is: 0.9288888888888889
Precision is: 0.9328556256943339 Precision is: 0.9328556256943339
Recall is: ©.928888888888889 Recall is: ©.928888888888889
F1 score is: ©.9292319932724993

Figure 4.8

TensorFlow vs TensorFlow Lite

Hardware Targets

The model building and original testing happened on a Windows Personal Computer. The
code was then transitioned to a Raspberry Pi 4 and Nvidia Jetson Nano for further testing and
experiment implementation. Each hardware requires different dependencies, and software
version builds are needed to get this working. The setup for the two devices is explained further
in Chapter VI. Both devices were chosen for their ease of access and ability to scale down the
actionability of smaller hardware use. The two devices also provided a platform to compare a
system that will do machine learning completely on its CPU (Raspberry Pi 4) and one that will

offload some work onto its GPU (Nvidia Jetson Nano).

30

Raspberry Pi 4
The main implementation of the model was managed via the Raspberry Pi 4. The Pi 4 is
built around the 64-bit Broadcom BCM2711B0O quad-core A72 with 4GB LPDDR4 SD RAM [52].
Additional peripherals were a Raspberry Pi Camera Module 3 for the camera and a Samsung 128

Evo Plus Memory card for memory storage. Figure 3.9 shows this configuration.

2 #0020

s @

@

.
"t 4 s ®

VWY g Gty R

Figure 4.9

Raspberry Pi 4 Dev Unit

Nvidia Jetson Nano
The Jetson Nano is built around an ARM Cortex A57 MPCore processor and NVIDI's
Maxwell architecture with 128 CUDA Cores. This system also has 4 GB of 64-bit LPDDR4 RAM
[53]. Additional peripherals were a SanDisk Extreme Pro 256GB SD card and a Raspberry Pi
Camera Module 2. The Pi Camera Module 3 could not be used at the time of writing because it

was not supported. Figure 4.10 shows the layout of the dev kit. NVIDIA develops CUDA, a parallel
31

computing platform and programming model designed for general computing on GPUs [54].
Nanocam was the most readily available camera codebase for the Jetson Nano. It was used to

control and take pictures.

Figure 4.10

Jetson Nano Dev Kit

Since TensorFlow-Lite and TensorFlow both have CUDA processing support, there could be
potential advantages it could bring compared to the Raspberry Pi. Implementing CUDA support
was a simple addition since the codebase easily checks if it can be used, so implementation was

straightforward. Both bits of hardware allowed for effective ways to start down-scaling hardware

32

and implementing the model. It is worth noting that while the original software target for the
hardware was TensorFlow 2.15 (which is supported on the Raspberry Pi), the latest version of
TensorFlow that works with the Jetson Nano is 2.7 at the time of writing. A drop to TensorFlow
2.6 was required to have everything operational. Other software dependencies had to use
different version numbers to become operational. Appendix B shows the general installation and

setup process for the dev kit.

Model Implementation on Hardware

Once a satisfactory model (80% accuracy or better) was created, it was applied to the two
target hardware platforms. A program was designed to read all images from a file folder (this
came from the data split and is the test data), classify the images, and place each image into the
model's correct folder. Each of these folders represents one of the five classes of PV types and
contains organized images. To help with future model training, it would note and then store a
copy in another folder. The code determines the closeness of two probabilities by looking at the
two highest probable classifications. After this, it subtracts the lowest of the two options from
the highest. If this remainder is under 58%, the code determines the model was close to picking
one of two classifications. Since there were two likely classification candidates, whether the
image was chosen correctly or not, it is important to earmark this image as it could have value in
future iterations of training the model. Upon further review, these images could be added back
into the next model training session, allowing for a more robust model.

Model Improvement and Additional Evaluation

33

Once hardware was tested and results were gathered, k-fold cross-validation was applied
to the model. This was done to better, unbiasedly understand how the model was being
implemented. Based on the results of k-fold cross-validation, additional changes to model
training and image dataset choices were made. These were as follows:

e Reduce the image pool for each category to the same number of images (94) before
augmentation.
o Arandom number generated selected these images to reduce the chance of
human bias.
e Try different numbers of augmented samples.
e Look at the effect of adding and removing different categories of images.

e Use a low number of epochs for rapid prototyping.

All of these were done to help remove bias and improve the model.

34

CHAPTER V

RESULTS

Model Testing and Creation

Each model is created with a five-class classification using categorical cross-entropy loss,
a batch size of 32, and the Adam optimizer with a learning rate of 0.001. The initial model was
created based on only five epochs, yielding a decent accuracy rating of 87.29%. The model ended

up with 154 MobileNetV2 layers. A generalization of these layers is shown in Table 5.1.

35

Table 5.1 Model Block Layer Breakdown

Layer

Description

Input Layer

The base layer takes in the input

Convolution layer

Takes an input, does batch normalization, and then a RelLU

activation passes to the next block.

Blocks 1 through 16

(bottleneck layers)

Filters out nodes from the previous layer to obtain a
representation of the input with reduced dimensionality.

[37,38]

Convolutional Layer

Takes an input, does batch normalization, and then a RelU

activation passes to the next block.

Global average pooling 2d

Structural regularizer to help prevent overfitting for the overall

structure of the model. [65]

Drop out layer

Removes nodes from the NN to help reduce overfitting.

Dense layer

Layer that receives output from every neuron from the
previous layer. Calculates the dot product of the input and the

neuron weights.

36

During the training process, it was realized that the good and dusty databases had images with
the same watermarks. There was worry that the model could perceive these watermarks as
important features, adding an unwanted bias. The database was handpicked to fix this, and all
watermarked images were removed. The model was then recreated, this time without
watermarks. There was roughly a 2.2% accuracy increase and a 2.5% F1 score increase from
removing all the watermarked images. With the proof of concept finished, a final pass was done.
This last pass created the final model using the same classification and optimization methods,
but this time with a validation accuracy process of one hundred epochs. This tightened the

accuracy to 92.89% and the F1 score to 92.92%. (Table 5.2).

Table 5.2 Comparison of Model Tests based on Epoch and Watermark Removal

After creating a model of acceptable accuracy (aiming around 90%), the TensorFlow model was

converted into a TensorFlow Lite model. The model dropped from 12.2 MB to 8.47 MB in size.

37

Analysis of Model Implementation on Hardware

The program designed for analysis reads all images from a file folder and places them into
what the model deemed the correct folder. If an image had two areas close in tolerance, it would
note and store a copy in another folder. This process worked because the code would take the
two highest probable categories and subtract the most probable from the second most probable.
If this number was less than 0.58, the two probabilities were close enough that the image might
not be sorted correctly. For instance, Figure 5.1 — Dusty Solar Panel Deemed Good had a
probability difference of 0.087693125, meaning the image might not be sorted correctly. The
model claimed a probability of 4.5615301e-01 for being a dusty solar panel and a probability of

5.4384613e-01 for being a good solar panel.

38

Figure 5.1

Dusty Solar Panel Deemed Good

While the image limit on the PC was not hit, the original image run of 2,250 images was beyond
the limit for the target hardware. Thus, the image count was lowered to 1,576 for large-scale
image testing as this number could still be allocated into one array in memory for the Raspberry

Pi and Jetson Nano. Figure 5.2 shows a block diagram of how the code functions.

39

Mass Image Sort Broken
Predict_N_Sort.py Close | Glass

Dusty

Pile of Images

Normalization

Hotspots

Micro
-cracks

il

Figure 5.2

Block Diagram of Predict_N_Sort.py

Each run had the same images and was sorted into categories for each run. The code running on
the Raspberry Pi with the Raspbian OS took the longest average processing time, 260.40 seconds
(about 4.34 minutes) or 6.05 images per second. The Raspberry Pi running Bookworm processed
and classified the images in approximately 129.1 seconds or 12.2 images per second, a substantial
increase. The Jetson Nano processed these images at an average of roughly 195.9 seconds or
8.04 images per second. These times and values are the average calculated across ten runs,
covering image selection, preprocessing, normalization, and classification (Table 5.3). The

Raspberry Pi completes all these tasks in roughly 66.78103 seconds, faster than the Jetson Nano.

40

Table 5.3 Predict_N_Sort.py Time Trials

253.4199 129.2129 200.5513
251.1060 129.0683 196.7776
246.3445 129.1950 192.7811

274.5008 128.9511 194.9502
252.4989 128.9323 193.5942

Average Time 260.3992 129.0933 195.8743

While the time trials were running, a power meter tracked the power draw, and the
maximum power used during the prediction was recorded, as shown in Table 5.4. This worst-case
scenario facilitates determining how much power would be drawn in the field if large amounts

of images were processed simultaneously.

41

Table 5.4 Max Power Usage While Predicting

Average

The power draw between the Bookworm OS and the Nano was 0.1 watts. The Raspberry
Pi running the Raspbian OS used slightly less power overall. However, it did have to run for much

longer.

42

A total of fifty-five images were flagged as close. Out of these fifty-five images, twenty of
them were mislabeled. Only 107 images were labeled incorrectly. This means the test dataset
had a failure rate of approximately 6.79%. Out of these images, the majority of the mislabeled
were either in the Good or Dusty categories. Sixty-nine good images were labeled Dusty, while

28 "Dusty" panels were labeled "Good." Table 5.5 shows a full breakdown of mislabeled images.

Table 5.5 Breakdown of Mislabeled Images

Broken Glass | O

Good

Microcracks 0]

Camera Tests

With Camera testing, the "Predict_N_Sort.py" Python program was modified to take a
picture at 224 x 224 pixels resolution. If it is not the correct resolution, it will resize and normalize
it. After that, it will use the TensorFlow Lite model and place that image into a folder based on

the model's decision. Figure 5.3 shows the block diagram of how this code functions.
43

Image Capture and Broken
Predict Close Glass
]
. (] Dusty
Device Takes]
L
Image
[:E:] => Preprocessing/ |:> Model l=> Good
Normalization
Hotspots
Micro
-cracks

Figure 5.3

Programming Block Diagram for caplmg_Predic_N_Sort.py

Ten pictures were taken, and the time it took to complete this process was recorded, which is

presented in Table 5.6.

44

Table 5.6 Picture and Sort Time Trials

1 0.3095 0.1929 0.5710

3 0.2913 0.2330 0.3725

5 0.3113 0.1967 0.4418

7 0.2987 0.1891 0.4362

9 0.3011 0.1381 0.3857

Average

The average time on the Raspberry Pi with Raspbian was roughly 0.303 seconds, which, if a
human is in the loop taking pictures of solar panels, should give the system enough time to
process and sort before the next image comes in. This is surprising, given how poorly it
predicted a large swath of images. It even beat the Nano, which had an average of 0.425
seconds. However, the Raspberry Pi running with Bookworm and picam2 beat both with an
average of 0.185 seconds. Like before, the maximum power usage was recorded during the
program's run-time, as shown in Table 5.7. The Nano power draw is slightly less than the
Raspberry Pi, beating it by an average of .14 Watts. It is worth noting that the power savings are
offset by the additional code runtime on this device.

45

Table 5.7 Max Power Usage Single Image Capture and Inference

Average

46

Flight Times

The average power usage of the camera tests was lower than predicted. Power usage
will impact flight time the least by keeping the run time short. This is because less wattage is
used over a smaller amount of time, and less drain will be done on the battery. Table 5.8 shows
an estimated flight time based on the additional power draw of our two devices while running
at different throttle settings. In this table, the power usage of the code was calculated based on
the code running for 1 minute straight, using the equation milliamp hours per minute/ max

battery capacity.

Table 5.8 Estimated Flight Times

Throttle Flight FT - FT — Jetson FT - FT — Jetson
usage Time - Raspberry Pi | Nanoldle | Raspberry Pi4 | Nano Image
base (Min) 4 1dle Image capture Capture
100% 8.9286 8.8256 8.8974 6.8496 7.9143
65% 21.7391 21.1384 21.5553 12.5010 16.5691
50% 38.4615 36.6204 37.8900 16.6684 24.7811

It is worth noting that this estimate does not include the impact of additional weight on the
UAV, so the estimate is not 100% accurate. However, these calculations were based on the four

propellers datasheet [55] used by the 3DR X8+. However, from the estimates, the Raspberry Pi
47

will affect the flight time more than the Nano. However, this additional power draw allows for
the ability to take five images and classify them over a minute compared to the Nano, which can

only do two images in the same amount of time.

K-fold Validation and Model Adjustments

The other tests for model inference on devices and power consumption have great
results. The model was then put through a k-fold cross-validation of k=10. Figure 5.4 shows the
results of the 100 epoch model. The average score for all ten folds was just 26.67% accuracy,

much lower than the original 92.89%.

Average scores for all folds:
Accuracy: 0.26666666716337206 (+- ©0.012146475299136367)
Loss: 2.17417459487915

F1l: 0.2643195137381554
Recall: 0.20297619104385375
Precision: 0.27230033874511717

Figure 5.4

Ten Fold Cross-Validation of the model

The resulting averages show an average validation loss of 2.17 and an average validation
accuracy of 26.6% for the model. The first thing that was done was a review of the dataset.
Upon review, there were less than four good microcracked images. There were so few
microcracked images in general that the category was removed, and the model was rebuilt and

tested again. The accuracy increased to 30.12% in this case, and the loss dropped to 1.64. The

48

accuracy improvement makes sense since there is one less category. The worst-case scenario is
a one-in-four chance of predicting versus the one-in-five chance of the original model. The loss
rate drop shows that the microcracked images affected the model training. The next course of
action was to equalize the image pool in the four-image type dataset. There were ample dusty
and good PV images, while there were only ten images for each category. After searching for
more images, the image count for hotspots and broken glass was increased to 94 images each.
Since these images were close-up, aerial PV images, like those shown in Figure 5.5, were
removed to remove the bias of additional features. For instance, a potential bias that could be
perceived is the roadway shown in Figure 5.5. While the image contains solar panels, if enough
roadways are added to the dataset, the model could potentially start to learn them as a

potential feature.

49

Figure 5.5

Example of Aerial Images Removed

After removing aerial images, a random number generator was used to pull 94 images for the
good and dusty categories. For quick prototyping, the k-fold value was reduced to four from ten,
and a total of ten epochs were used. The model was trained using k-fold validation on just the
94 images and an augmented image set comprised of 1,880 images. The original 3,000 images
were compared to the original model for the final four categories. To understand how the
model is learning from the classes provided, only two classes were trained. After the 94-image

test was completed, another test with 1,880 images was performed. After this, the broken glass

50

class was added to the training process, training on both 94 and 1,880 images each. After those
tests were completed, the final class of hot spots was added. Table 5.9 shows the average
accuracy results for each test with un-augmented and augmented images, as well as the
accuracy after each class was added back into the model. Tables 5.10, 5.11, and 5.12 present
accuracy results via a confusion matrix for two classes (dusty and good), three classes (broken
glass, dusty, and good), and four classes (broken glass, dusty, good, and hotspots, respectively.
These tables break down the accuracy of each class, the overall accuracy, and a breakdown of

what the model inferred each test image.

51

Table 5.9 K-fold Results

@3000 images

Average Validation Accuracy (%) Validation Loss
Dusty/Good @94 images 60.07 0.88
Dusty/Good @1880 images 56.55 0.88
Broken/Dusty/Good @94 30.56 1.47
images
Broken/Dusty/Good @1880 35.12 1.35
images
Broken/Dusty/Good/Hotspot 25.30 1.86
@94 images
Broken/Dusty/Good/Hotspot 28.02 1.53
@1880 images
Broken/Dusty/Good/Hotspot 28.12 1.49

52

Table 5.10 Confusion Matrix: Dusty and Good

94 images 1880 Images
Dusty | Good | Accuracy Dusty | Good | Accuracy
Dusty 35 3 0.921053 Dusty 37 1 0.973684
Good 14 24 0.631579 Good 21 17 0.447368
0.517544 0.473684

Table 5.11 Confusion Matrix: Broken Glass, Dusty, and Good

94 Images 1880 Images
Dust | Goo Dust | Goo
Broken |y d Accuracy Broken |y d Accuracy
Broken 29 15 16 | 0.483333 Broken 22 30 8 | 0.366667
Dusty 32 13 15 | 0.216667 Dusty 13 34 13 | 0.566667
Good 36 17 7 | 0.116667 Good 7 30 23 | 0.383333
0.272222 0.438889

53

Table 5.12 Confusion Matrix:

Broken Glass, Dusty, Good, and Hotspots

94 Images

Broken | Dusty | Good | Hotspot | Accuracy
Broken 24 6 20 10 0.4000
Dusty 15 18 18 0.3000
Good 11 6 35 0.5833
HotSpot 10 15 10 25 0.4167
0.5667

1880 Images

Broken | Dusty | Good | Hotspot | Accuracy
Broken 36 13 8 0.6000
Dusty 8 29 14 0.4833
Good 13 17 28 0.4667
HotSpot 22 12 14 12 0.2000
0.5833

3000 Images

Broken | Dusty | Good | Hotspot | Accuracy
Broken 20 14 11 15 0.3333
Dusty 14 34 6 6 0.5667
Good 15 17 27 0.4500
HotSpot 3 25 12 20 0.3333
0.5611

The average loss decreased except for the dusty and good PV categories (Table 5.9). For
example, broken glass, dusty, and good dropped 1.47% to 1.35%, and the average accuracy
went up from 30.56% to 35.12%, which is expected. As more data is used to train the model,
the model learns a more accurate representation of the feature distributions used to separate
one class from another. Overall, the model's loss improved, which is a good indicator that over-

fitting is not occurring. However, with such a finite number of images, the data was augmented

54

to 2,000% for 1,880 and up to 3,191% for 3,000 images. There is concern that augmenting the
base dataset by such a large percentage is biasing the model. Table 5.12 shows there is an
actual trend of dropping accuracy when the model is trained on 3,000 augmented images
compared to 1,880 augmented images. The original model had a loss rate of 2.17 and an
accuracy of 26.6%, with the original five-class dataset of ten images for the broken glass,
hotspot, and microcracked classes. Removing the microcracked images resulted in a loss of 1.64
and an accuracy of 30.12%. The model's accuracy drops when the number of images per class is
kept the same. Data augmentation may create a bias that results in higher accuracy. For a less
biased model, it is suggested that the number of images per class be the same and the
augmentation of the dataset be limited. A better approach would be to collect and add
additional images to each class. These images could include any test images labeled "close"
from previous tests, but further research is needed to ensure the model is not overfitting. One
of the options to help ensure overfitting is not occurring is just to get more images. However,
since that can be an issue, lowering the number of MobileNet layers and simplifying the model
is one option to help prevent overfitting with smaller datasets. The 154 MobileNet layers may
be too deep of a CNN for the model to learn properly. Another option could be expanding the
number of classes, adding classes like bird droppings, vegetation growth, etc. This could give the

model more data and potential new features to help differentiate the current classes.

55

CHAPTER VI

FUTURE WORK

There are still concerns about how small the image pool is for each class within the
dataset before augmentation. One possible approach to dealing with this concern is the selection
of a classifier that works better with smaller datasets. This is in addition to updating the model
with more images as they are captured by onboard cameras or discovered through additional
searches. Continuously updating the model will allow for a better, more robust inference system.
An investigation into image distortion, resulting from resizing images to 224-by-224 pixel images,
impacts on model performance. The current device choice running our model can classify images
correctly while having a minor impact on flight time. This model can be used to classify and report
damage to PVs. Given that the end goal is to deploy and integrate this model on a UAV, an
additional hardware choice could still be made. Smaller edge devices could still be explored as
the weight of the current hardware choices on top of the potential weight of any other
instrumentation could cause an additional impact on flight time. TensorFlow Lite allows even
smaller edge devices to use less power and weight. A device like Espressif's ESP32-S3-EYE or a
similar edge device could be considered if power and weight are issues with the original hardware
targets. However, switching the software codebase from Python to C++ could be difficult on some

edge devices like the Espressif. A choice of whether to use the UAV's camera or an additional
56

mounted camera to acquire images still needs to be made. If using the UAV's onboard camera, a
process to interface and use these images still needs to be created. After the camera interface is
developed and integrated into the UAV, an image Geo-tagging process will need to be made,

integrated, and tested.

57

CHAPTER VII

CONCLUSION

This study demonstrated that a MobileNetV2 Convolution Neural Network classification
model for Solar Panel health could be determined in real-time. This model can classify four
types of panel issues and determine if a panel has no issues, all while having a short inference
time. Currently, the latest OS on the Raspberry Pi is the best option. The Pi, using this small 5-
class classification model and program, can take, normalize, and process a new image in roughly
0.185 seconds. This allowed the next steps to putting this on a UAV, taking real-world photos,
and processing on the fly. Using a TensorFlow Lite model also allows scaling down for other
lightweight, low-power systems that could further extend the product's battery life. Meanwhile,
the 92.89% accuracy of the originally tested model appears to be misleading based on the k-fold
validation results. Future dataset tuning and more image data should allow for a more robust
model. The next step should be to start overlaying GPS data on images. The GPS data will be
processed to allow the user to quickly locate a given panel after identifying a damaged panel.
Overall, the proposed method will enable users to find and diagnose solar panel issues rapidly,

thus allowing quicker troubleshooting and repair.

58

REFERENCES

Lawerence Berkely National Laboratory, et al. "Utility-Scale Solar, 2023 Edition Empirical
Trends in Deployment, Technology, Cost, Performance, PPA Pricing, and Value in the United
State" emp.lbl.gov, Oct. 2023,
emp.lbl.gov/sites/default/files/utility_scale_solar_2023_edition_slides.pdf. Accessed 1 Nov.
2023.

E. Cook, S. Luo, and Y. Weng, "Solar Panel Identification Via Deep Semi-Supervised Learning
and Deep One-Class Classification," in IEEE Transactions on Power Systems, vol. 37, no. 4,
pp. 2516-2526, July 2022, doi: 10.1109/TPWRS.2021.3125613.

Maijdi, Abdulrhman, et al. "Fundamental study related to the development of modular solar
panel for improved durability and repairability." IET Renewable Power Generation 15.7
(2021): 1382-1396.

Wolfgang Muehleisen a, et al. "Outdoor Detection and Visualization of Hailstorm Damages of
Photovoltaic Plants." Renewable Energy, Pergamon, 8 Nov. 2017,
www.sciencedirect.com/science/article/pii/S0960148117311114?casa_token=UV9Rkt50PrY
AAAAA%3AdTYybnJtjTvWaGNXBo_eR_CRPt_zKgDWINI304RIgllaLleNFXe4YjmC2FCbm3cONrG
POgINnFwaw.

Li, Qi, et al. "Automatic damage detection on rooftop solar photovoltaic arrays." Proceedings
of the 7th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and
Transportation, 18 Nov. 2020, https://doi.org/10.1145/3408308.3431130.

Chen, Xin, et al. "Automated defect identification in electroluminescence images of solar
modules." Solar Energy, vol. 242, Aug. 2022, pp. 20-29,
https://doi.org/10.1016/j.solener.2022.06.031.

Dwivedi, Divyanshi, et al. "ldentification of surface defects on solar PV panels and wind
turbine blades using attention based deep learning model." Engineering Applications of
Artificial Intelligence, vol. 131, May 2024, p. 107836,
https://doi.org/10.1016/j.engappai.2023.107836.

Padmavathi, N., and A. Chilambuchelvan. "Fault detection and identification of solar panels
using Bluetooth." 2017 International Conference on Energy, Communication, Data Analytics
and Soft Computing (ICECDS), Aug. 2017, https://doi.org/10.1109/icecds.2017.8390096.
Segovia Ramirez, Isaac, et al. "Fault detection and diagnosis in photovoltaic panels by
radiometric sensors embedded in unmanned aerial vehicles." Progress in Photovoltaics:
Research and Applications, vol. 30, no. 3, 3 Oct. 2021, pp. 240-256,
https://doi.org/10.1002/pip.3479.

59

[10]

[11]

[12]

[13]

[14]

[15]

[17]

[18]

[19]

[20]

[22]

Zefri, Yahya, et al. "Thermal infrared and visual inspection of photovoltaic installations by UAV
photogrammetry—application case: Morocco." Drones, vol. 2, no. 4, 23 Nov. 2018, p. 41,
https://doi.org/10.3390/drones2040041.

Zhao , Raymond. "Photovoltaic (PV) Solar Panel Identification and Fault Detection Using
Unmanned Aerial Vehicles (UAVs): A Case Study of a 0.5 MW PV System ." Yale University,
2022.

Li, Xiaoxia, et al. "Intelligent fault pattern recognition of aerial photovoltaic module images
based on deep learning technique." J. Syst. Cybern. Inf 16 (2018): 67-71.

Akram, M. Wagqar, et al. "CNN based automatic detection of photovoltaic cell defects in
electroluminescence images." Energy, vol. 189, Dec. 2019, p. 116319,
https://doi.org/10.1016/j.energy.2019.116319.

Ferndndez, Alberto, et al. "Robust detection, classification and localization of defects in large
photovoltaic plants based on unmanned aerial vehicles and infrared thermography." Applied
Sciences, vol. 10, no. 17, 27 Aug. 2020, p. 5948, https://doi.org/10.3390/app10175948.

Jeffrey Kuo, Chung-Feng, et al. "Automatic detection, classification and localization of defects
in large photovoltaic plants using unmanned aerial vehicles (UAV) based infrared (IR) and RGB
imaging." Energy Conversion and Management, vol. 276, Jan. 2023, p. 116495,
https://doi.org/10.1016/j.enconman.2022.116495.

Kirsten Vidal de Oliveira, Aline, et al. "Aerial infrared thermography for low-cost and fast fault
detection in utility-scale PV power plants." Solar Energy, vol. 211, Nov. 2020, pp. 712-724,
https://doi.org/10.1016/j.solener.2020.09.066.

Moradi Sizkouhi, Amirmohammad, et al. "A deep convolutional encoder-decoder
architecture for autonomous fault detection of PV plants using multi-copters." Solar Energy,
vol. 223, July 2021, pp. 217-228, https://doi.org/10.1016/j.solener.2021.05.029.

Ruan, Chenjie, et al. "Deep learning-based method for PV panels segmentation and defects
detection with infrared images." 2021 China Automation Congress (CAC), 22 Oct. 2021,
https://doi.org/10.1109/cac53003.2021.9728350.

Di Tommaso, Antonio, et al. "A multi-stage model based on yolov3 for defect detection in PV
panels based on IR and visible imaging by Unmanned Aerial Vehicle." Renewable Energy, vol.
193, June 2022, pp. 941-962, https://doi.org/10.1016/j.renene.2022.04.046.

Ayoub, Naeem, and Peter Schneider-Kamp. "Real-time onboard detection of components and
faults in an autonomous UAV system for power line inspection." Proceedings of the 1st
International Conference on Deep Learning Theory and Applications, 2020,
https://doi.org/10.5220/0009826700680075.

KAYCI, Baris, et al. “IHA Tarafindan Elde Edilen termal gériintiiler kullanilarak fotovoltaik
sistemde derin 6grenme Tabanli Ariza Tespiti ve Teshisi.” Journal of Polytechnic, 10 June 2022,
https://doi.org/10.2339/politeknik.1094586.

Ksira, Zakaria, et al. "A novel embedded system for real-time fault diagnosis of photovoltaic
modules." [EEE Journal of Photovoltaics, vol. 14, no. 2, Mar. 2024, pp. 354-362,
https://doi.org/10.1109/jphotov.2024.3359462.

60

(23]

[24]

[25]

[26]

[27]

(28]

[29

[}

[30

=

[31]

[32]

[33]

[34]

Le, Minhhuy, et al. "Thermal inspection of photovoltaic modules with deep convolutional
neural networks on edge devices in AUV." Measurement, vol. 218, Aug. 2023, p. 113135,
https://doi.org/10.1016/j.measurement.2023.113135.

Shihavuddin, ASM, et al. "Image based surface damage detection of renewable energy
installations using a unified deep learning approach." Energy Reports, vol. 7, Nov. 2021, pp.
4566-4576, https://doi.org/10.1016/j.egyr.2021.07.045.

Ozer, Tolga, and Omer Tiirkmen. "An approach based on deep learning methods to detect
the condition of solar panels in solar power plants." Computers and Electrical Engineering,
vol. 116, May 2024, p. 109143, https://doi.org/10.1016/j.compeleceng.2024.109143.

T.J. O'Shea, T. Roy, and T. C. Clancy, "Over-the-Air Deep Learning Based Radio Signal
Classification," in IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp. 168-
179, Feb. 2018, doi: 10.1109/JSTSP.2018.2797022. keywords: {Modulation;Feature
extraction;Wireless communication;Neural networks;Machine learning;Fading
channels;Decision trees;Cognitive radio;deep learning;modulation;neural networks;pattern
recognition;sensor systems and applications;wireless communication},

Li, Qi, Keyang Yu, and Dong Chen. "SolarDiagnostics: Automatic damage detection on
rooftop solar photovoltaic arrays." Sustainable Computing: Informatics and Systems 32
(2021): 100595.

Meribout, Mahmoud, et al. "Solar panel inspection techniques and
prospects." Measurement (2023): 112466.

Lydia, MD Dafny, K. Sri Sindhu, and K. Gugan. "Analysis on solar panel crack detection using
optimization techniques." Journal of Nano-and Electronic Physics 9.2 (2017): 2004-1.

Cardinale-Villalobos, Leonardo, Renato Rimolo-Donadio, and Carlos Meza. "Solar panel
failure detection by infrared UAS digital photogrammetry: a case study." Int. J. Renew.
Energy Res. (IJRER) 10.3 (2020): 1154-1164.

S. Voghoei, N. Hashemi Tonekaboni, J. G. Wallace and H. R. Arabnia, "Deep Learning at the
Edge," 2018 International Conference on Computational Science and Computational
Intelligence (CSCl), Las Vegas, NV, USA, 2018, pp. 895-901, doi:
10.1109/CSCI46756.2018.00177. Keywords: {Computational modeling; Quantization (signal);
Deep learning; Internet of Things; Edge computing; Performance evaluation; Image edge
detection; Edge Computing, Internet of Things (loT), Deep Learning (DL), Deep Neural
Networks (DNN)},

Muller, Andreas C., and Sarah Guido. Introduction to Machine Learning with Python: A Guide
for Data Scientists. O'Reilly Media, 2018.

C.Gambella, B.Ghaddar, and J.Naoum-Sawaya, "Optimization problems for machine learning:
A survey," European Journal of Operational Research, vol. 290, no. 3, pp. 807-828, 2021.
[Online].Available: [1901.05331] Optimization Problems for Machine Learning: A Survey
(arxiv.org)

Rawat, Waseem, and Zenghui Wang. "Deep convolutional neural networks for image
classification: A comprehensive review." Neural Computation 29.9 (2017): 2352-2449.

61

1351 Kapoor, Amita, et al. Deep Learning with TensorFlow and Keras: Build and Deploy Supervised,

[36

[37

[39

[40

[41

[42

[43

[44

[45

[46

]

—

[t

[}

]

—

—

—

[l

—

[}

Unsupervised, Deep, and Reinforcement Learning Models. Packt Publishing, 2022.

J. Brownlee, "Gentle introduction to the Adam optimization algorithm for deep learning,"
MachineLearningMastery.com, https://machinelearningmastery.com/adam-optimization-
algorithm-for-deep-learning/ (accessed Dec. 20, 2023).

Sharma, Nitika. “What Is Mobilenetv2? Features, Architecture, Application and More."
Analytics Vidhya, 29 Dec. 2023, www.analyticsvidhya.com/blog/2023/12/what-is-
mobilenetv2/#:~:text=The%20use%200f%20MobileNetV2%20for%20image%?20classificatio
n%20offers,compared%20t0%20larger%20and%20more%20computationally%20expensive
%20models.

Howard, Andrew G., et al. "MobileNets: Efficient Convolutional Neural Networks for Mobile
Vision Applications." arXiv.Org, 17 Apr. 2017, arxiv.org/abs/1704.04861.

Andriana, Shehani. "The Most Common Types of Solar Panel Defects." Engineering, 23 Nov.
2023, engineerinc.io/the-most-common-types-of-solar-panel-
defects/#:~:text=The%20Most%20Common%20Types%200f%20Solar%20Panel%20Defects,
4%20Electrical%20Problems%20...%205%20Manufacturing%20Defects%20.

B. T. Kitano, C. C. T. Mendes, A. R. Geus, H. C. Oliveira and J. R. Souza, "Corn Plant Counting
Using Deep Learning and UAV Images," in IEEE Geoscience and Remote Sensing Letters, doi:
10.1109/LGRS.2019.2930549. keywords: {Agriculture;Computer architecture;Unmanned
aerial vehicles;Training;Image segmentation;Deep learning;Cameras;Deep learning
(DL);plant counting;precision agriculture.}

Ammour, Nassim, et al. "Deep learning approach for car detection in UAV imagery." Remote
Sensing 9.4 (2017): 312.

Qu, Zhongnan. "Enabling Deep Learning on Edge Devices." arXiv.Org, 6 Oct. 2022,
arxiv.org/abs/2210.03204.

"Tensorflow Lite: ML for Mobile and Edge Devices." TensorFlow, www.tensorflow.org/lite.
Accessed Dec. 2023.

Hunter, Jona than, "Deep learning-based anomaly detection for edge-layer devices"
(2022). Masters Theses and Doctoral Dissertations.
https://scholar.utc.edu/theses/740

Chen and X. Ran, "Deep Learning With Edge Computing: A Review," in Proceedings of the
IEEE, vol. 107, no. 8, pp. 1655-1674, Aug. 2019, doi: 10.1109/JPROC.2019.2921977.
keywords: {Deep learning;Edge computing;Cloud computing;Computational
modeling;Training;Servers;Neural networks;Computer vision;Machine learning;Artificial
intelligence;Artificial intelligence;edge computing;machine learning;mobile
computing;neural networks},

Qurishee, Murad Al, "Low-cost deep learning UAV and Raspberry Pi solution to real-time
pavement condition assessment" (2019). Master Theses and Doctoral Dissertations.
https://scholar.utc.edu/theses/601

62

[47]

(48]

[49]

[50]

[51]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

A. Zeggada, F. Melgani, and Y. Bazi, "A Deep Learning Approach to UAV Image
Multilabeling," in IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 5, pp. 694-698,
May 2017, doi: 10.1109/LGRS.2017.2671922. keywords: {Unmanned aerial
vehicles;Training;Neural networks;Feature extraction;Histograms;Image
segmentation;Computer architecture;Convolutional neural networks (CNNs);image
multilabel;Otsu’s algorithm;unmanned aerial vehicles (UAVs);urban monitoring},

Mittal, Payal, Raman Singh, and Akashdeep Sharma. "Deep learning-based object detection
in low-altitude UAV datasets: A survey." Image and Vision Computing 104 (2020): 104046.

"Solar Panel Dust Detection." Kaggle, 20 Nov. 2022,
www.kaggle.com/datasets/hemanthsai7/solar-panel-dust-detection.

AFROZ (2024). "Solar Panel Clean and Faulty Images." 2024, from
https://www.kaggle.com/datasets/pythonafroz/solar-panel-clean-and-faulty-images.
Sandler, Mark. "MobileNetV2: Inverted Residuals and Linear Bottlenecks." arXiv.org, 13 Jan.
2018, arxiv.org/abs/1801.04381.

"Raspberry Pi 4 Specs and Benchmarks — the MagPi Magazine." The MagPi Magazine,
magpi.raspberrypi.com/articles/raspberry-pi-4-specs-benchmarks.

"NVIDIA Jetson Nano." NVIDIA Developer, developer.nvidia.com/embedded/jetson-nano.
"Cuda Zone - Library of Resources." NVIDIA Developer, developer.nvidia.com/cuda-zone.
Accessed 16 Feb. 2024.

"Sunnysky V2216 Multirotor Brushless Motors." SunnySky USA,
sunnyskyusa.com/products/sunnysky-v2216-motors. Accessed 17 Mar. 2024.

Team, Keras. "Simple. Flexible. Powerful." Keras, keras.io/. Accessed 11 Dec. 2023.

S. Kim, S. Chon, J. -K. Kim, J. Kim, Y. Gil and S. Jung, "Lightweight Convolutional Neural
Network for Real-Time Arrhythmia Classification on Low-Power Wearable
Electrocardiograph," 2022 44th Annual International Conference of the IEEE Engineering in
Medicine & Biology Society (EMBC), Glasgow, Scotland, United Kingdom, 2022, pp. 1915-
1918, doi: 10.1109/EMBC48229.2022.9871156.

E. Arnaudo et al., "A Comparative Evaluation of Deep Learning Techniques for Photovoltaic
Panel Detection From Aerial Images," in IEEE Access, vol. 11, pp. 47579-47594, 2023, doi:
10.1109/ACCESS.2023.3275435.

Piazza, Maria Carmela di, et al. "ldentification of photovoltaic array model parameters by
robust linear regression methods." Renewable energy & power quality journal 1 (2009):
143-149.

G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, "Densely connected Convolutional
Networks," arXiv.org, https://arxiv.org/abs/1608.06993

Li, En, Zhi Zhou, and Xu Chen. "Edge intelligence: On-demand deep learning model co-
inference with device-edge synergy." Proceedings of the 2018 Workshop on Mobile Edge
Communications. 2018.

63

621 Chen, Jiasi, and Xukan Ran. "Deep learning with edge computing: A review." Proceedings of
the IEEE 107.8 (2019): 1655-1674.

631 Warden, Pete, and Daniel Situnayake. TinyML: Machine Learning with Tensorflow Lite on
Arduino and Ultra-Low-Power Microcontrollers. O'Reilly, 2020.

(641 Brownlee, J. (2023). "A Gentle Introduction to k-fold Cross-Validation." 2024, from
https://machinelearningmastery.com/k-fold-cross-validation/.

[65] Lin, M., et al. (2013). "Network in network." arXiv preprint arXiv:1312.4400.

64

APPENDIX A

SETUP RASPBERRY Pl 4

65

Before the Raspberry Piis hooked up, either download the Raspberry Pi Imager software
or be prepared to install it over the ethernet via SSH. This example will be using the 64-bit
Raspberry Pi OS. Select RASPBERRY PI OS (64-bit) FULL (the current version as of writing is
Bookworm). Launch Raspberry Pi Imager and select RASPBERRYPI 4 for the device and
RASPBERRY Pl OS (64-BIT) for the Operating system. Also, select the location of the SD CARD.

See Figure A.1 SD Card Set up — Raspberry Pi Imager.

{ 8, Raspberry Pi Imager v1.85 = 0 X

' Raspberry Pi

Raspberry Pi Device Operating System Storage

RASPBERRY Pl 4 RASPBERRY PI 0S (64-BIT) ENERIC- USB3.0 CRW -SD USB DE..

NEXT

Figure A.1
SD Card Set up — Raspberry Pi Imager

66

When asked to customize OS settings, select EDIT SETTINGS and update the following: Set the
username to pi and a password that can be remembered. See Figure A.2—Raspberry Pi OS

Customization Settings.

8, OS Customisation = X

GENERAL SERVICES OPTIONS

[C] sethostname:
Set username and password
Username: Pi

Password: ©®0©000ee

[] configure wireless LAN

less LAN country

[] setlocale settings

SAVE

Figure A.2

Raspberry Pi OS Customization Settings

Continue with the installation process. Once the SD card is imaged, insert it into the Raspberry
Pi 4 and turn it on. Log in and open the terminal to run the following commands: sudo apt

update && sudo apt upgrade -y. This will make sure that the device is fully up to date. Install the
67

dev environment in the terminal with the Sudo apt-get install code. Once installed, launch
Visual Studio Code by typing the code in the terminal and hitting enter. Click the extensions
button, type in Python, and click install for the Python extension. See Figure A.3 — Visual Studio
Code Python Extension Install on Raspberry Pi 4. Once the code is installed, install the Python

extension to debug or edit the codebase.

8 Q Pictures pi@raspberrypi: ~ ﬂ Welcome - Visual St..)B T 17:09

File Edit Selection View Go Run Terminal Help

Get Start

@ Cchoose your theme

Figure A.3

Visual Studio Code Python Extension Install

On Raspberry Pi 4

While the extension installs the rest of the code dependencies, go back to the terminal and run

Sudo rm /usr/lib/python3.XX/EXTERNALLY-MANAGED (replace xx with python version number;
68

currently it is 11.) and Sudo pip3 install numpy matplotlib scikit-learn augmentor split-folders
pyyaml opencv-python tensorflow keras keyboard picamera2. See Figure A.4 — Installing

Dependencies on Raspberry Pi 4.

File Edit Tabs Help

pi@raspberrypi: sudo rm /usr/1ib/python3. /EXTERNALLY -MANAGED
pi@raspberrypi: sudo p natplotlib scikit-1

R T . \ hot -f
it-folders L V thon tensorflow

Looking in indexes: ht 2/ .org/sim
Requi in
Collectir

Downlo

scikit_learn-1.4.0-1-cp311-cp311-m:
(11.5 MB)

Figure A.4
Installing Dependencies on Raspberry Pi 4

Once all the dependencies are installed, copy the Al_Image_Solar Folder from

Al _Image_Solar_pi_Bookworm to /home/pi. Return to Visual Studio Code, go to the explorer

69

tab, and open the Al_Image_Solar Folder by clicking open folder, selecting the Al _Image_Solar

folder, and clicking open. Figure A.5 — Raspberry Pi Visual Studio Developer Environment Set up.

Open Folder

File Edit Selection View Go Run Terminal Help

@

v NO FOLDER OPENED

© Recent <« ®pi » (o

[Desktop gé_olar 120
Bookshelf 5 Dec 2023

Desktop 5 Dec 2023

4 Downloads =] Documents 5 Dec 2023

] Downloads 5 Dec 2023
Music 5 Dec 2023
Pictures 17:28

Clone Repository s YO Videos i Public 5 Dec 2023

Templates 5 Dec 2023
H20CBV.. & Videos 17:04

Open Folder : DO Documents

dd Music

& Pictures

=+ Other Locations

Cancel Open

> OUTLINE
TIMELINE

Figure A.5

Raspberry Pi Visual Studio Developer Environment Set Up

With the dev environment fully loaded, go to codes Predict_N_Sort.py and click the run python
file to verify everything is working correctly in Visual Studio code. There should be some files in

the unsorted folder for it to sort through. Once it's complete, there should see some of the Sort

70

Folders now have five new folders, correlating to the five-panel types, and that all the images
from the unsorted file are moved into them. To test if the camera is operational, we will need
to run the Python code as root. Running either image_capture_picam2.py,
caplMG_Predict_N_Sort.py, or capIMG_Predict_N_Sort_instant.py as root. By using sudo
python <pythonfilename.py>. To do this, open or reuse the existing instance of the terminal,
use commands cd /Al_Image_Solar/codes, and then sudo python capIMG_Predict_N_Sort.py.
See Figure A.6 Demonstration of capIMG_Predict_N_Sort.py. There will be a command asking

to press p to take a picture or e to exit the code.

71

File Edit Tabs Help

pi@raspberrypi:
pi@raspberrypi:
[0:42:19.218 9] [3738] INFO Camera

[3749] WARN RPiSdn
SDN inside rpi.denoise
[3749] INFO RPI
to Unicam device /dev/media
INFO RPI

a’/splpe

Line/rpi/v

8] ‘INFO Camera

WARN RPiSdn
51de rpl.denolse
INFO RPI
. 1 aevice aev/m
INFO RPI
ipeline/rpi/vc4/rpi_apps.y

ex]

> XNNPACK delegate for CPU.

Figure A.6

Demonstration of capIMG_Predict_N_Sort.py

The image will be shown sorted into a folder. The process of setting up the Raspberry Pi 4 is

finished.

72

APPENDIX B

SETUP JETSON NANO

73

The Jetson Nano is a GPU-focused device with quite a few more steps to set up
compared to the Raspberry Pi. Three bits of software are needed to set up the Nano. First, an
SD Card Formatter can be found at
https://www.sdcard.org/downloads/formatter_4/eula_windows/. The latest version of Jetpack
(4.6.3 at the time of writing) is https://developer.nvidia.com/jetson-nano-sd-card-image, and

Etcher, the imaging software is located at https://www.balena.io/etcher.

Launch the SD Card formatting software shown in Figure B.1. Select the hard drive (drive E:/ in

the example). Select "quick format," then leave the volume label section blank. Click format.

B3 SD Card Formatter - X
File Help
Select card
E:\ - bootfs v
Refresh

Card information
Type SDXC

Capacity 119.08 GB
Formatting options
© Quick format
() Overwrite format
CHS format size adjustment

Volume label

Format

SD Logo, SDHC Logo and SDXC Logo are trademarks of SD-3C, LLC.

Figure B.1
74

SD Card Formatting

Unzip the downloaded image folder for the Jetson Nano SDK from wherever it has been
downloaded. Then launch Etcher. Click "Select image" and go to the extracted images folder.
Select "sd-blob-b01.img. Then click "Select Target," selecting the formatted SD card. Then click

"Flash". See Figure B.2 for what this should look like.

-

balenaEtcher

." balenaEicher

© — A

sd-blob-b01.img Generic- ...SB Device

Figure B.2

Balena Etcher Setup

75

Once finished flashing the device, take the SD card out and plug it into the Jetson Nano. Power
on the Nano; a prompt will appear with the first-time setup information. Accept the terms of
Nvidia's licenses and the other system configurations like language and English keyboard. For
the username, we used g and set a password; for the APP, the partition size is set to the
maximum megabytes. For Nvpmodel mode select MAXN. This should begin the system
configuration process. As mentioned earlier, the Nano is a bit trickier to set up than the
Raspberry Pi, so we have a few more commands to execute. Once logged in, run sudo apt

update && sudo apt full-upgrade. Figure B.3 — Full System Update — Linux

Q€ g@g-desktop: ~

Preparing to unpack .../41-libcupsimage2 2.2.7-1ubuntu2.10_armé64.deb ...
Unpacking libcupsimage2:armé64 (2.2.7-1ubuntu2.10) over (2.2.7-1ubuntu2.8)
Preparing to unpack .../42-1libcups2_2.2.7-1ubuntu2.10_armé4.deb ...

Unpacking libcups2:armé64 (2.2.7-1ubuntu2.10) over (2.2.7-1ubuntu2.8)

Preparing to unpack .../43-libnss3_2%3a3.35-2ubuntu2.16_armé64.deb ...

Unpacking libnss3:arm64 (2:3.35-2ubuntu2.16) over (2:3.35-2ubuntu2.13)

Preparing to unpack .../44-chromium-browser_112.0.5615.49-0ubuntu0.18.04.1_armé64
.deb ...

Unpacking chromium-browser (112.0.5615.49-0ubuntu6.18.04.1) over (97.0.4692.71-0
ubuntu0.18.04.1)

Preparing to unpack .../45-chromium-codecs-ffmpeg-extra_112.0.5615.49-0ubuntu0.1
8.04.1 arm64.deb ...

Unpacking chromium-codecs-ffmpeg-extra (112.0.5615.49-0ubuntu6.18.04.1) over (97
.0.4692.71-0ubuntu0.18.04.1)

Preparing to unpack .../46-imagemagick-6-common_8%3a6.9.7.4+dfsg-16ubuntu6.15_al
l.deb ...

Unpacking imagemagick-6-common (8:6.9.7.4+dfsg-16ubuntu6.15) over (8:6.9.7.4+dfs
g-16ubuntu6.12)

Preparing to unpack .../47-libfreetype6_2.8.1-2ubuntu2.2_arm64.deb ...

Unpacking libfreetype6:armé64 (2.8.1-2ubuntu2.2) over (2.8.1-2ubuntu2.1)
Preparing to unpack .../48-1ibjbig6 2.1-3.1ubuntu0.18.04.1 arm64.deb .

Unpacking libjbig0:arm64 (2.1-3.1ubuntu0.18.04.1) over (2.1-3.1build1)

igi3i3:2:2:202:2:2:2:2:2:2:2:2:3 -2+

Figure B.3

76

Full system Update - Linux

A prompt will ask if you want to continue typing y and hitting enter. During the update, a
prompt asking to update nvidia-tegra.conf and nv-oem-config-post. Select Y. Another propt will
also ask to restart the Docker daemon. Select Yes. Once done, run reboot, go back into the
terminal, and run sudo apt install --fix-broken -o Dpkg::Options::="--force-overwrite". Then, type
reboot. Once rebooted, we will begin installing the dependencies. To install the dependinces,
we have a few lines of code we will need to type up. Run the following lines of code in this exact
order, as the dependency manager on the Nano does not appear to be as robust as the
Raspberry Pi's. Thus, if programs are not installed in the right order, things may not work as

intended. Run the following lines of code:

sudo apt-get install git cmake

sudo apt-get install python3-dev

sudo apt-get install python3-pip

python3 -m pip install --upgrade pip

pip3 install -U pip testresources setuptools

sudo apt-get install libfreetype6-dev python3-setuptools libatlas-base-dev libhdf5-serial-dev
hdf5-tools libhdf5-dev gfortran libc-ares-dev libeigen3-dev zliblg-dev zip libjpeg8-dev liblapack-
dev libblas-dev libfreetype6-dev protobuf-compiler libprotobuf-dev openssl libssl-dev libcurl4-

openss|-dev

77

pip3 install -U numpy==1.19.3 future==0.18.2 mock==3.0.5 gast==0.4.0 protobuf pybind11

pkgconfig packaging

After running these lines of commands, type reboot.

Now that most of the dependencies are installed. Begin downloading TensorFlow and Keras

onto the Jetson Nano by opening up a terminal and running the following commands:

Sudo In -s fusr/include/locale.h /usr/include/xlocale.h

pip3 install --verbose 'protobuf<4' 'Cython<3'

pip3 install --extra-index-url https://developer.download.nvidia.com/compute/redist/jp/v46

tensorflow==2.6.2+nv21.12

pip3 install keras==2.6

During the installation of Tensorflow 2.6.2, there will be a long wait for a wheel of numpy
version 1.12 to be built. This is shown in Figure B.4 — Numpy Wheel. Trust the process, and it

will eventually get done.

78

e Y

g@g-desktop: ~

sion == "3.6"' 'Cython>=0.29.14; python_version >= "3.8"' pkgconfig 'numpy==1.
.3; python_version >= "3.9"'

WARNING: The directory '/home/g/.cache/pip' or its parent directory is not g
ed or is not writable by the current user. The cache has been disabled. Check
e permissions and owner of that directory. If executing pip with sudo, you sho
d use sudo's -H flag.

Ignoring numpy: markers 'python version == "3.7"' don't match your environmg

Ignoring numpy: markers 'python_version == "3.8"' don't match your environme

Ignoring Cython: markers 'python_version >= "3.8"' don't match your environ

Ignoring numpy: markers 'python_version >= "3.9"' don't match your environmg
Collecting Cython>=0.29
Downloading Cython-3.0.8-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_a
ch64.whl (3.3 MB)
Collecting numpy==1.12
Downloading numpy-1.12.0.zip (4.8 MB)
Preparing metadata (setup.py): started
Preparing metadata (setup.py): finished with status 'done'
Collecting pkgconfig
Downloading pkgconfig-1.5.5-py3-none-any.whl (6.7 kB)
Building wheels for collected packages: numpy
Building wheel for numpy (setup.py): started
Building wheel for numpy (setup.py): still running...

Figure B.4
Numpy Wheel

After Tensorflow and Keras are installed, we will continue to download a few more

dependencies for the code base by running the following commands:

pip3 install matplotlib augmentor split-folders pyyaml keyboard scikit-learn

sudo pip install scipy==1.5.4

sudo apt-get install nano

sudo apt-get install dphys-swapfile

pip3 install nanocamera

79

reboot

After these are installed, the final two dependencies can be installed: a OpenCV version
allowing us to use Nvidia's CUDA cores. First, build OpenCV code provided by QEngineering.eu.
This section will cover the steps to install this code; otherwise, for more information, please go

to their website and read more about it.

Run the command sudo nano /sbin/dphys-swapfile. This will open the physical swapfile location
and scroll down to the CONF_MAXSWAP variable. Change its value to 4096. Figure B.5 —

sbin/dphys-swapfile edit shows what this should look like. Hit "CTRL+X" to save and exit the file.

m

g@g-desktop: ~

GNU nano 2.9.3 sbin/dphys-swapfile

CONF_SWAPFACTOR=2

CONF_MAXSWAP=4096

PATH=/sbin: /bin: /usr/sbin: /usr/bin

ad Get Help QO Write Out @Y Where Is @Y Cut Text @B Justify ae Cur Pos
d Exit B Read File @\ Replace &Y Uncut Texti@@l To Linter gl Go To Line

Figure B.5
sbin/dphys-swapfile edit

80

We now also need to edit the /etc/dphys-swapfile settings as well. Run the command sudo nano

/etc/dphys-swapfile.

Find and uncomment (remove the #) in the file and add 4096 to the variable, as shown in Figure

B.6 — etc/dphys-swapfile edit. Just like before, hit "Ctrl+x" to exit and save the file.

g@g-desktop: ~
GNU nano 2.9.3

ONF_SWAPSIZE=4096[]

¢ Get Help Write Out @Y Where Is Cut Text Justify Cur Pos
A /\U I\T

i Read File @\ Replace Uncut Text To Spell @M Go To Line

Figure B.6
etc/dphys-swapfile edit

After saving the etc/dphys-swapfile file, run the reboot command. Once rebooted, reopen the
terminal and run the command free -m. The output of which should match Figure B.7 — Correct

Memory Management.

81

L

'« X—X0

g@g-desktop: ~

g@g-desktop:~S free -m

total shared buff/cache available
Mem: 3955 19 602 3016
Swap: 6073
g@g-desktop:~$ l

Figure B.7

Correct Memory Management

Next, we will run the commands to start installing the custom OpenCV install for the Jetson
Nano. A word of warning: this, at a minimum, will take three and a half hours. In some cases, it

takes up to twelve hours to build and install. Run the following commands in the terminal:

wget https://github.com/Qengineering/Install-OpenCV-Jetson-Nano/raw/main/OpenCV-4-9-

0.sh

sudo chmod 755 ./OpenCV-4-9-0.sh

./OpenCV-4-9-0.sh
82

Once the codebase has been built successfully, a screen similar to that in Figure B.8 will appear.

Enter the root password and let it finish installing.

g@g-desktop: ~ SAmaxn 1y @) 7:13PM %

[99%] Linking CXX shared library ../../lib/libopencv_videostab.so
[99%] Built target encv_videosta

B [99%]
= 99%]
99%] Linking CXX executable ../../bin/opencv_perf_superres
99%]
99%] Built target opencv_perf_superres
99%]
In file included from /home/g/opencv/build/modules/python_bindings_generator/pyopencv_generated_include.h:90:0,
from /home/g/opencv/modules/python/src2/cv2.cpp:11:
/home /g/opencv_ contrib/modules/cudafeatureszd/include/opencvz/cudafeatureszd hpp:121:26: war : ‘virtual void sl ::DescriptorMatch:
lear()’ can be marked override [-
CV_WRAP virtual void clea

mpty() const’ can be marked override [-I verride]
CV_WRAP virtual bool () const

In file included from /home/g/opencv/build/modules/python_bindings_generator/pyopencv_generated_include.h:90:0,
from /home/g/opencv/modules/python/src2/cv2.cpp:11:
/home /g /opencv_ contrtb/modules/cudafeatureszd/include/opencvz/cudafeatureszd hpp:121:26: war : ‘virtual void 2l ::DescriptorMatcher::c
“lear()’ can be marked override [-
CV_WRAP virtual void

i /home/g/opencv_contrib/modules/cudafeatures2d/include/opencv2/cudafeatures2d.hpp:125:26: warning: ‘virtual bool zis ::DescriptorMatcher::e

/home /g/opencv_ contrlb/nodules/cudafeatureszd/tnclude/o encv2/cudafeatures2d.hpp:125:26: ing: ‘virtual bool zis ::DescriptorMatcher::e
mpty() const’ can be marked override [
CV_WRAP virtual bool empt

A ..

[100%]

[100%]

[160%]

[160%]

[100%] Linking CXX shared module ../../lib/python3/cv2.cpython-36m-aarch64-1inux-gnu.so
[100%] Built target opencv_python3

[160%] Linking CXX shared module ../../lib/cv2.so

[100%] Built target opencv_python2

[sudo] password for g:

Figure B.8
OpenCV Successfully Built

After OpenCV has been successfully installed. Run the following commands:

rm OpenCV-4-9-0.sh

sudo /etc/init.d/dphys-swapfile stop

sudo apt-get remove --purge dphys-swapfile

sudo rm -rf ~/opencv

sudo rm -rf ~/opencv_contrib

83

reboot

There is a bit more of a process to get the development environment installed and working. This
is since Visual Studio Code is not natively supported on the Nano. To install, run the following

commands:

git clone https://github.com/JetsonHacksNano/installVSCode.git

cd installVSCode

nano instalVSCodeWithPython.sh./installVSCodeWithPython.sh

Since, at the time of writing, the latest version of Visual Studio Code did not work, we needed to
set the .sh file to install a known good version, which is currently 1.80.0. Figure B.9 - Visual
Studio Code Setup shows what this should look like. After adding in 1.80.0, hit "Ctrl + x" and
save the file. Then run the command ./installVSCodeWithPython.sh. After this, Visual Studio can

be run by typing code into the terminal.

84

g@g-desktop: ~/installvSCode

(< Y —

g@g-desktop: ~/installvSCode
GNU nano 2.9.3 installvSCode.sh

EML”]M@

JERSION-1.80.0

wget -N -0 vscode-linux-deb.armé64.deb https://update.code.visualstudi$
sudo apt install ./vscode-linux-deb.armé64.deb

4

B
7
[1
-
[}
-

Read 13 lines]
gl Get Help QY Write Oout @ Where Is Al Cut Text asl Justify
@4 Exit gl Read File [\ Replace &Y Uncut Text @l To Linter

Figure B.9

Visual Studio Code Setup

85

Once all the Visual Studio code and the dependencies are installed, copy the Al_Image_Solar Folder from
Al_Image_Solar_pi_letson_Nano to /home/. Return to Visual Studio Code, Go to the explorer tab, and
open the Al_Image_Solar Folder by clicking the open folder, selecting the Al_Image_Solar folder, and
clicking open. Run Predict_N_Sort.py to verify the code base is working. We should see the unsorted

folder is now empty, and the test images are sorted into the correct categories.

86

VITA

Garrick Daniel Muncie was born in Detroit, MI. He is the first of two children. He
attended the Academy of Information Technology at Apex High School in Apex, North Carolina.
After graduation, he attended Tennessee Technological University, where he became interested
in Computer Engineering. He completed the Bachelor of Science degree in December 2016 in
Computer Engineering with a minor in Mathematics. Garrick is continuing his education in

engineering by pursuing a master's degree at the University of Tennessee Chattanooga.

87

