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ABSTRACT 
 

 
The number of utility-scale PV installations is rising, with a power capacity of 12.5 

Gigawatts installed in 2021, 10.4 in 2022, and an estimated 24 Gigawatts installed in 2023 [1]. 

With larger-scale installations, quicker ways of identifying and locating damaged PV arrays are 

needed. The solution presented in this thesis is to use drones to capture aerial photos and 

TensorFlow-Lite and Keras deep learning methods to determine if a panel has defects, such as 

debris, cracked panels, and hotspots. The model features an execution time of 0.185 seconds 

per picture. In addition, the model will run on an embedded system with a relatively low impact 

on power consumption, minimizing the reduction of flight time. The Raspberry Pi has an 

approximate 0.1-minute effect on flight time while idling and with the worst-case scenario of 

affecting flight time by approximately two minutes if left running for the entire flight. 
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CHAPTER I 
 

INTRODUCTION 
 
 

 With the conƟnuous growth of residenƟal and uƟlity-scale photovoltaic (PV) 

sources (solar panels), it is of growing importance for uƟliƟes to gain an increased 

understanding of solar panels and how the PV’s status affects the uƟlity system[2]. The 

number of uƟlity-scale PV installaƟons is rising, with a power capacity of 12.5 GigawaƩs 

installed in 2021, 10.4 in 2022, and an esƟmated 24 GigawaƩs installed in 2023 [1]. This 

growth requires improvements to current damage collecƟon and repair diagnosƟcs 

soluƟons and new soluƟons to diagnose issues. Current soluƟons in machine learning 

focus on certain subsets of damage collecƟon and repair diagnosƟcs [3-25]. The soluƟon 

historically has been based on different photo types, electroluminescence, Infrared 

Imagery, sƟll images, or a combinaƟon. These photos have been taken from unmanned 

aerial vehicles (UAV) or personnel. The deep learning on these images has happened 

mainly with off-site compuƟng [4-18, 24, 26-30]. However, a currently sought-aŌer 

soluƟon is flying over a uƟlity field with a UAV, taking pictures, Geo-tagging its locaƟon 

with Global PosiƟoning Systems (GPS), and processing the image with a machine 

learning neural network. The images are then classified into areas for a technician to 

understand what is wrong with the panel and send them on their way to fix the 

idenƟfied panel. This has been done to some varying degrees [2-30]. A review of the 
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literature reveals that few soluƟons seem to cover a large span of images and damage 

types and compare between different devices. This thesis seeks to close this gap. 

Research QuesƟons 

 In this thesis, the following research quesƟons were asked: 

 With the wide array of PV damage types, is there a way to classify types of 

damage with a single model? 

 What is the power consumpƟon differences between different edge devices? 

(such as a Raspberry Pi 4 or Nvidia Jetson Nano) 

o Will power consumpƟon differences affect drone flight Ɵmes? 
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CHAPTER II 
 

BACKGROUND 
 
 

Neural Networks 

 Neural networks represent a class of machine learning models loosely inspired by 

studies about the central nervous system. Each Neural Network comprises several 

interconnected "neurons" arranged into "layers." These neurons pass informaƟon messages to 

other neurons in the next layer. The first studies started in the early 1950s and have grown 

exponenƟally in recent years [31]. At its basic premise, machine learning is broken up into two 

subsets: unsupervised and supervised machine learning. In unsupervised learning, where there 

is no known output, the learning algorithm is given input data and is asked to extract knowledge 

from said data [32]. Supervised learning is one of the most common and successful types of 

machine learning. It is used whenever a given input is used to predict. For supervised learning 

algorithms to work, they require example inputs together with corresponding example outputs. 

[32]. 

 
 
Deep Learning 

 Deep learning is currently one of the most popular approaches to machine learning. Deep 

learning started geƫng its name when these types of neural networks uƟlized three to five layers. 

Research on the nature of deep learning has existed for quite some Ɵme. However, the complexity 
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and computaƟonal power required of deep learning hindered its adopƟon and applicaƟon unƟl 

the mid-2000s. With the development of advanced processing units and large exponenƟal 

increases in data, there has been a resurgence in deep learning research. These advancements 

have now allowed for networks with more than 200 layers [31,33]. 

ConvoluƟonal Neural Networks 

 ConvoluƟonal neural networks (CNNs) have been applied to visual tasks since the late 

1980s. However, despite a few scaƩered applicaƟons, they were dormant unƟl the mid-2000s 

when developments in compuƟng power and the advent of large amounts of labeled data, 

supplemented by improved algorithms, contributed to their advancement and brought them to 

the forefront of a neural network renaissance that has seen rapid progression since 2012 [34]. 

CNNs consist of input, hidden, and output layers. The hidden layers are added to the network 

because the addiƟonal neurons can facilitate learning more complex paƩerns in the training 

data. They are called hidden because they do not directly connect with the input or the output 

layer of the Neural Network [35]. Hidden layers allow the model to calculate more coefficients 

(weights) for the model to learn [36]. These weights are numerical values that determine the 

strength of a connecƟon or signal between nodes. The value of these weights is adjusted in the 

training phase of a Neural Network and ulƟmately helps define the output of the predicƟve 

system. Figure 2.1 provides a representaƟve illustraƟon of a CNN comprised of an input, a single 

hidden layer, and an output layer. 
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Figure 2.1 

IllustraƟon of CNN with a Single Hidden Layer 

 
 
There are many different architectures and models from which to build a CNN, and various 

methods are menƟoned in this paper, such as You Only Look Once (YOLO), Residual Networks 

(ResNets), and Very Deep ConvoluƟonal Networks (VGG). However, this paper focuses on the 

MobileNetV2 architecture. 

MobileNetV2 

 The MobileNetV2 architecture is based on an inverted residual structure where the 

input and output of the residual block are thin boƩleneck layers opposite to tradiƟonal residual 

models, which use expanded representaƟons in the input. MobileNetV2 uses lightweight depth-

wise convoluƟons to filter features in the intermediate expansion layer [2]. This allows for a 
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smaller model size that can be created in a shorter Ɵme span while also allowing the achieved 

model accuracy to be compeƟƟve with more computaƟonally expensive models [37]. 

MobileNet uses a boƩleneck structure to reduce the computaƟonal cost by using 1x1 

convoluƟons to reduce the number of channels before applying depth-wise separable 

convoluƟons [37,38]. A MobileNet adds addiƟonal layers before the classifier layer in typical 

CNNs. These new core layers are built upon separate depth-wise filters. These depth-wise filters 

are done through depth-wise convoluƟon, allowing the model to shrink the hyperparameter's 

width mulƟplier and resoluƟon mulƟpliers [38,51]. The layered architecture of MobileNetV2 is 

shown in Figure 2.2.  

 
 

 
Figure 2.2 

MobileNetV2 Architecture Sketch 
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Terminology 

Some basic definiƟons of Machine Learning terms shall be relayed here. 

 Model: The result of training an algorithm based on data supplied. The model is used to 

make inferences based on newly inpuƩed data. 

 Batch size: number of samples fed into the network algorithm at a Ɵme during model 

training. 

 Epoch: One epoch is a single pass of batch data through the algorithm (neural network). 

AŌer each pass, depending on the opƟmizer, weights to the algorithm will be adjusted 

for the next pass. 

 OpƟmizer: An algorithm to determine weight updates to the learning rates of the model 

during training. TradiƟonally, this is done using some form of stochasƟc gradient descent 

(SGD) procedure. However, newer algorithms like Adam use a combinaƟon of gradient 

algorithms and other methods. For instance, Adam uses the AdapƟve Gradient 

Algorithm and Root Mean Square PropagaƟon to determine weights effecƟvely in deep 

learning models. 

 Categorical Cross-entropy: ObjecƟve funcƟon of Keras, which defines a mulƟclass 

logarithmic loss. This compares the distribuƟon of the predicƟons with the true 

distribuƟon, with the probability of the true class set to a one and zero for other classes. 

If the true class is c and the predicƟon is y, then the categorical cross-entropy is defined 

as [19]: 

L(c,p) = - ∑ ci ln(pi) 
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 Accuracy: The metric to evaluate the training of the model. It's the proporƟon of correct 

predicƟons concerning the total number of predicƟons. 

 Precision: The metric used to evaluate the training of the model is the proporƟon of 

correct posiƟve predicƟons concerning the number of correct and incorrect posiƟve 

predicƟons. 

 Recall: The metric to evaluate the training of the model is the proporƟon of correct 

posiƟve predicƟons concerning the actual number of posiƟve predicƟons 

 F1 Score: The metric to evaluate the training of the model. It's the harmonic mean of the 

precision and recall values. 

 SoŌmax: Layer type takes the feature as input and calculates the probabiliƟes as outputs 

for each class. Then, select the highest probability score. 

 RecƟfied Linear Unit (ReLU) AcƟvaƟon: a piecewise linear funcƟon that will output the 

input directly if the input is posiƟve; else, it will output zero. Thus, if the input is 

negaƟve, it gets converted to zero, and the inpuƩed neuron does not get acƟvated. ReLU 

is the default acƟvaƟon funcƟon for most neural networks. 

PV Damage Types 

There are many common types of PV damage; however, some more common effects are 

hotspots and broken glass [39]. Dust covering the PV and microcracks are also damage types 

affecƟng energy producƟon. 

 Hotspots: Defects that form small spots that dissipate the generated current in the form 

of heat [3]. 



9 

 Dust: Dust is not just sand and dust parƟcles; this can also be related to fallen tree limbs 

or any other obstrucƟon that forms an obstrucƟon between the panel and the Sun. 

 Microcracks: Ɵny cracks that cannot be seen with the human eye. 

 Broken Glass: As the name suggests, the PV's glass panel is damaged, prevenƟng it from 

funcƟoning properly. 

K-Fold Cross ValidaƟon 

 With one test on model data, the algorithm could get lucky with the results and have great 

data; k-fold cross-validaƟon allows one to train and evaluate a model mulƟple Ɵmes to ensure 

the model acts as expected. The k is a variable that represents how many splits and tests one will 

do on the model's dataset. In general, the data set is split into k "folds." One of the folds will be 

selected as the validaƟon dataset, while the remaining will become the training dataset. The 

model will be evaluated and trained on this data, and an evaluaƟon score will be created using 

the validaƟon dataset. Since this is a method to evaluate a model design, not a parƟcular training, 

the fold data will report the average performance of the model [64]. Figure 2.3 shows a visual 

representaƟon of the K-fold process for k, which equals four in this case. 
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Figure 2.3 

 
K-fold Cross-ValidaƟon k Equals Four Sketch 
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CHAPTER III 
 

RELATED WORK 
 
 

 Chapter 3 explores works that have already been conducted that hold similar ground to 

image detecƟon with deep learning. The following subsecƟons discuss soluƟons and results of 

other lightweight machine learning algorithms. 

 

Deep Learning with Solar Panel Damage 

 There are already a few approaches to solar panel damage with deep learning [3-

29,40,41]. The authors of [5] used two databases organized by brand, an ambiguous damaged, 

and a good dataset for classifiers. One of these datasets was ten "mock" residenƟal images, 

while the other dataset was 60,000 images. They used a MaƩhews CorrelaƟon Coefficient 

(MCC) to determine the accuracy and ran two experiments. First was a pre-trained approach 

using a CNN, where they had a 94.7% MCC accuracy. AŌer this, they started retraining the CNN 

to achieve an approximate accuracy of 100% using the training data. The authors of [6] looked 

at damage to solar panels using EL images. They focused on intact panels, cracked, had intra-cell 

damage, solder issues, and oxygen bubbles. Their dataset consisted of 19,228 EL images 

comprised of 640x512 pixels. Then, the results of ResNet models (ResNet18,50,152) and a YOLO 

model were compared. The authors of [6] achieved an F1 score of 0.83 on ResNet18 and a 0.78 

F1 score on YOLO. For the final model, ResNet was chosen based on this score. The authors of 
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[7] used MobileNetV1 to achieve an accuracy of 88.29% when classifying 45,469 augmented 

images with the following classes: clean, dust, cement, bird droppings, cracks, snow, soil, and 

shadows. Before augmentaƟon, they had a total of 4,110 images. The authors of [27,29] 

reference issues in gathering images of damaged PVs as there is not much public data available, 

and both used image augmentaƟon to generate results. The authors of [27] collected a total of 

350 images and augmented them to create a total of approximately 60,000 images. Using 

TensorFlow and homemade code Ɵtled SolarDiagnosƟcs, they classified shaded, dust, snow, and 

good PVs with an accuracy of 85.9%. Others, like [28], point out that a wide array of camera and 

noncamera opƟons are needed as condiƟons can result in areas where one opƟon cannot be 

used. They used EL and IR images to detect microcracks, dirt, hotspots, and bird droppings with 

an accuracy of 99.8%. This was achieved using Kera's deep convoluƟonal network, Visual 

Geometry Group 16 (VGG16). The authors of [13] used 44 EL images augmented up to 2,624 

images. The two classes used were good and defecƟve. Using a VGG6-based CNN, the authors 

of [13] created their model using cross-validaƟon with a fold size of four. This resulted in an 

average accuracy of 93.025%. The authors of [18] tested two different CNN's, a YOLOV4 and a 

ResNet, for model creaƟon. These models were trained on IR images. They used a dataset of 

3,582 augmented 640x512 pixel images to determine if a panel had hit a segmentaƟon 

threshold or had a hotspot. The YOLOv4 achieved an average accuracy of 99.01%, while the 

ResNet model achieved an accuracy of 99.23%. The authors of [34] specifically use infrared to 

idenƟfy cells with hot spots or areas with higher temperatures than other solar panel areas. In 

contrast, the authors of [7,10,24] use a mix of tradiƟonal imagery and infrared images to classify 

not only PV's. The dataset [24] used comprised 1,136 images before augmentaƟon; each of 
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these images was converted down to 336x256 pixels and to greyscale before training on the 

data. Ten classes were used: discoloraƟon, delaminaƟon, corrosion, glass crack, IC failure, 

hotspot, cell crack, permanent soiling, good, and back sheet damage. The authors of [24] used 

mulƟple different models to train on the data, which resulted in 87.3% accuracy. However, no 

loss data was presented. Authors of [15] used Tensorflow and Keras to build their CNNs and 

tracked the accuracy with different model opƟmizers. With 600 IR images, the authors of [15] 

achieved accuracies of up to 98.93% with SGD and 94.52% with Adam on the IR images to 

detect damage; they also claim that the model with the Adam opƟmizer could get close to 100% 

at detecƟng hotspots. While the exact number of each image class was not idenƟfied, they had 

the following categories: normal, dirt, vegetaƟon, hot spot, mulƟ-hot spot, open circuit, cell 

crack, and DC box component. The authors of [24] had classifiers of clean, dust, cement, 

shadow, bird droppings, crack, snow, and soil. Shadow-covered PVs have a total of 56 images, 

the largest image class consisƟng of 1,204 images of dusty PVs, and a dataset comprised of 

4,110 images in total. AŌer this, they used image augmentaƟon to generate a dataset of 45,469 

images and achieved 94% accuracy with their proposed model. The authors of [25] had a 

dataset of 1,100 images and three classes: normal, damaged, and dusty, achieving an accuracy 

of 93.7% using an SGD opƟmizer. The image sizes and normalizaƟon process were not provided.  

 

Deep Learning on Edge Devices and Microcontrollers 

Deep learning on edge devices has seen a lot of aƩenƟon in the last seven years. High-

performance model training is sƟll mainly done on state-of-the-art computers due to resource 

consumpƟon [42]. However, the opƟon of implemenƟng and using trained models on much less 
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resource-intensive devices, such as microcontrollers and mobile devices [43] or even small GPUs 

[42], is quite incenƟvizing. Deep learning on edge devices has seen large swaths of use cases, 

from UAVs to many other applicaƟons. The authors of [22] designed a small CNN model using 

Tensorflow-Lite and Keras to develop a real-Ɵme fault detecƟon system for PVs. The authors of 

[22] focused on five class labels: healthy, dirty, degraded, sand deposit, and overheated juncƟon 

box. They had 670 IR images that were augmented up to 5,786 images. The smallest image 

count was "Overhead JuncƟon Box" at 90 images. This was augmented up to 877 images. At the 

same Ɵme, the largest image pool of 150 dirty images was augmented to 1,425 images. Running 

their model on the Arduino Nano 33 BLE Sense, [22] achieved an accuracy of 94.8%. The 

authors of [44] have an edge device (Raspberry Pi 4) that can discover anomalies that could be 

malicious traffic on a network. The authors of [45] detail the challenges of developing edge 

cases to train the model on the device instead of using a state-of-the-art computer, which may 

be useful for updaƟng the model on the fly. There are also methods to update and train a model 

through over-the-air updates [26,45]. 

 

Deep Learning with Unmanned Aerial Vehicles 

There are various applicaƟons for using Machine Learning devices while flying UAVs 

(more commonly known as drones). This ranges from using sƟll images to real-Ɵme image 

detecƟon to MulƟlabel object detecƟon [4-25,46,47,48]. There are also more precise 

applicaƟons like counƟng corn [40] or even determining cars via segmentaƟon techniques. In 

the case of PV analysis, the way these images are typically handled is a UAV will take pictures of 

an area, then in some ways are transferred to a computer for classificaƟon [4-20]. For instance, 
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the authors of [8] used Bluetooth to transfer the images from a UAV to their CPU. The authors 

of [20-23, 25, 46] have been able to do classificaƟon on an embedded system that is mounted 

on a UAV. The authors of [11] used a K-means classifier on a dataset of 4,969 RGB images and 

4,143 IR images taken from UAVs. The authors of [11] focused on whether there was a faulty 

panel or if a panel was good, with an accuracy of 96.1%. The authors of [12] used UAVs to take 

and transfer images over 4G. They had a dataset of 6 kinds of images: 100 encapsulant 

delaminated, 100 encapsulant delaminated, 100 broken glass, 500 dust, 200 snail trail covered, 

and 2,000 good images. Their model achieved an accuracy of 78.61%. The authors of [14] used a 

dataset of 500 IR images, 63 of which had hotspots, 15 of which had bypass defects, and the 

remainder of which were good. These images were taken at 640x512 pixels and were used to 

form two classes, good and defecƟve. Achieving a 98.47% with just a binary classifier. The 

authors of [17] used a VGG16 CNN to detect if bird droppings were on PVs. About 1,000 640-by-

480 pixel images were taken by UAVs to train this data. The authors of [17] did not break down 

how many images were good and how many had bird droppings. The calculaƟons of a 

percentage of PVs had bird droppings from the zones the images were taken from. The number 

of images per zone was not given. The authors of [19] look into using YOLOV3 as its CNN 

classifier and apply it to two different datasets to see if they can get comparable results. The 

first dataset consisted of 2,038 640x512 pixel IR images that looked to classify heated joints and 

hotspots in PVs, while the second dataset consisted of 1,500 1,600x1,200 images. The second 

dataset focused on soiling, strong soiling, raised panels, delaminaƟon, puddles, and bird 

droppings. This dataset had a breakdown of 428 strong soiling images, 475 raised panels, 525 

delaminated panels, 1060 soiling, 3403 puddles, and 4095 bird-dropping images. For both these 
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datasets, image augmentaƟon was applied, though the number of images is not stated. In their 

first dataset, an accuracy of 66.9% is achieved, while 68.5% is achieved with their second 

dataset. The authors of [20] compared the performance of three different models designed on 

the YOLOv3 classifier on different hardware targets. The use case used a UAV equipped with 

onboard hardware to label the antenna, insulators, and vibraƟon dampeners of power systems 

in real-Ɵme. They focused on which device and opƟmized model would produce the most 

efficient real-Ɵme data. They measured how many frames their hardware could process per 

second. In the end, the authors of [20] determined the YOLOv3 opƟmized model on the Nvidia 

Jetson AGX Xavier resulted in the best accuracy while processing fiŌy 288x288 pixel images per 

second. The authors of [21] conƟnue to follow the real-Ɵme approach using IR cameras to 

detect cell, module, or panel faults. One-hundred and sixty-two images were used to train a 

YOLOv3 model on a Nvidia Jetson TX2. A breakdown of 54 images shows the model and 36-

panel faults, and the rest show the device operaƟng normally. Using these three classes, the 

model achieved an overall accuracy of 95%. The authors of [23] were another IR-focused PV 

expansion method that had 12 classes: cell damaged, mulƟ-cell damage, crackling, diode 

damage, mulƟ-diode damage, hotspot, mulƟ-hotspot, offline module, shadowing, spoiling, 

vegetaƟon, and good. The authors of [23] reference that most models up to the point of wriƟng 

had a dataset of a range from 110 to 900 IR images, so they acquired 20,000 IR image data sets. 

This dataset had a wide range of images for each given type, as there were only 175 images for 

the mulƟ-diode damage, while single-cell damage had 1,877 images. Data augmentaƟon was 

used to increase the number of images, but the amount of this is not explained in the 

document. However, the authors menƟon that the images are normalized to 40x24 pixels 
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before training. They also noted that for future models, it would be wise to augment some 

images to solve for imbalanced classes of the model. The final model ended with an accuracy of 

85.4%. The author of [46] used a real-Ɵme system using MobilenetV1 to determine if concrete 

had been damaged to significant effect, having an approximate 95% accuracy on damage 

detecƟon, which has some very similar methods to what happens further in this paper.   

 

Summary of Literature 

 Overall, most of these documents cover a porƟon of the work carried out in this thesis. 

Table 3.1 compares what some of these documents cover versus this thesis. This thesis achieves 

a power-efficient mulƟ-image, damage classificaƟon model that is on board a UAV.  
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Table 3.1 Literature Comparison 
 

Ref No K-Fold 

/Cross 

Validated 

Model 

MulƟ 

Image 

Type 

Single Model Onboard 

ClassificaƟon 

MulƟple 

Device 

Comparison 

Power 

Usage 

(flight 

Ɵme) 

[27,13] X  X    

[15] X X X    

[28,7,11,12,19,24]  X X    

[5, 6, 9, 14, 17, 18, 

29] 

  X    

[20]   x x x  

[21-23]   X X   

[24]  x     

[10] X X     

[25]   x x   

Thesis X X X X x X 
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CHAPTER IV 
 

METHODOLOGY 
 
 

Model ImplementaƟon 

Dataset 

 For this work, a mix of provided and internet-found images (using keywords broken, 

cracked, microcracked, hotspot, dusty, solar panel, and PV) were used. The original dataset had 

no qualifiers when gathering data. For instance, one of the internet-gathered datasets of 

images was a set of "good" and "dusty" PV's from the image data set repository Kaggle [49,50]. 

Another dataset [49] contained a total of 2,562 images, 1,493 of which were deemed "clean" 

while the other 1,069 were considered "dusty," though dusty appears to cover bird droppings 

and other debris, not just dust. In contrast, the dataset provided by [50] contained 199 bird-

dropping, 202 clean, 220 dusty, 98 electrical damaged, and 66 physically damaged PV Images. 

Both datasets contained images from a wide array of different angles. Since a UAV will not 

always have a consistent image angle on PVs, it was thought that additional angles could help 

the model recognize panels. However, the PV data from these datasets had a few perceived 

abnormalities, such as people in photos, ads built into the photos, markings depicting the 

damage, and watermarked images. Figure 4.1 depicts a few of these removed outliers. A model 

was created with these abnormalities included and removed, with results shown in Table 5.2. 

Different angles and aerial views were left since these would most likely be present from drone 
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images. Other online images provided "microcrack" panels (which were captured with UV 

Cameras), "hot spot" panels, and "broken glass" panels. Figure 4.2 shows an example of each 

image category, and Table 4.1 shows the number of images after abnormalities were removed 

and before augmentation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



21 

 
 

Figure 4.1 

Outliers Removed from Dataset 

 

Table 4.1 Number of Each Image Type 

Good Dusty Hotspot Broken Glass Microcracked 

1000 950 94 94 10 
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Figure 4.2 

 
Collection of Sample Images 
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The number of dataset images for the different types of damage varied. Thus, augmentation of 

the image data pool was done to expand them. This augmenter code brought the image pool 

for each datatype to 3,000 images. The augmenter code was created with the Augmenter 

Python package and works as follows: 

 Take an image from the base pool. 

 Based on a probability, do at least one of the following: flip the image horizontally, flip 

the image vertically, rotate the image a maximum of five degrees left or by a maximum 

of ten degrees right, skew the image in one of twelve directions (Figure 4.3), and/or 

zoom into the image by a minimum factor of 1.1X zoom or a maximum factor of 1.5X 

zoom. 

 Save the image into a new folder to be used for model training.  

 Repeat the process until the desired sample size is reached. 

A dataset of about 500 was initially used to speed up the process of original prototyping. These 

data types were split in a 70:15:15 ratio for training, validation, and test datasets.  
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Figure 4.3 

 
Skewed Image Example 

 
 

Preprocessing 

There was a wide array of image resolutions and sizes on which the model was to be 

trained. The largest size being 5,472 x 3,080 pixels and the smallest size being 389 by 258 pixels. 

To reduce model size and provide uniformity, all images were preprocessed. First, all images were 

resized to a 224 x 224-pixel square. Distortion of the images was not factored in. After this, each 

image was normalized on a scale from negative one to one. Figure 4.4 shows a normalized 

image's basic input and output to the human eye. 
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Figure 4.4 

 
NormalizaƟon of an Image 

 
 

Neural Network ConstrucƟon – TensorFlow 

The initial model was built upon TensorFlow version 2.8 code base using Keras. Keras 

was used with TensorFlow since its primary purpose is to focus on debugging speed, code 

elegance, conciseness, maintainability, and deplorability [56]. It is a useful interface with 

TensorFlow and has many tool sets, allowing users to design different CNN models easily. For 

the classification model, CNN MobileNetV2 is used. The Keras code base was used to implement 

the MobileNetV2 normalization in the model. Since image classification methods are the target 

use case, a two-dimensional convolutional layer (Conv2D) was used. The final model consists of 

the following: an Input Layer, sixteen Block layers, a Dense layer, and an Output layer. Each of 

the sixteen block layers is then broken up into subsections, which do various processes to help 

the model determine classification and then pass the data to the next sublayer. Figure 4.5 and 

Figure 4.6 show what one block of data can look like for a given image. This heatmap is a bit of 

code that allows humans to visualize what features the model visualizes. There are five distinct 
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categories; thus, categorical labeling was used. The model will operate while using SoftMax 

activation.  

 

 

 
Figure 4.5 

 
Image to be Modeled 
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Figure 4.6 

 
Block One Heatmap 

 
 
The Adam opƟmizer was used to create the model, and categorical cross entropy was used as 

the objecƟve funcƟon. 
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TensorFlow Model TesƟng 

 A set of programs were used to create and test the model, as shown in Figure 4.7. 

 

 
Figure 4.7 

 
Program Flow for Model CreaƟon and TesƟng 

 
 

The general model creaƟon and training process started with a low epoch number of five and a 

smaller image dataset (500 images). This was to prototype a model quickly and to start working 

on a good set of programs that could interface with the resulƟng model. As stated earlier, the 

image data was proporƟoned into three categories: 70% for training, 15% for validaƟon, and 

15% for tesƟng. The model training code uses the training and validaƟon data sets to create and 

train the model. AŌer one complete pass of the training dataset (an epoch), the model is 

validated using the validaƟon dataset. The model is updated based on the validaƟon results, 

and another epoch is run using the updated weight values to improve model classificaƟon 

accuracy. For the prototyping, this process of adjusƟng epochs and training the model 
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conƟnued unƟl an accuracy of at least 80% was achieved. AŌer prototyping, the goal was to 

achieve an accuracy within the range of 90% and 95%. The model is stored for subsequent 

tesƟng once an accuracy between 90% and 95% is achieved. The model was tested using the 

remaining test image data set and the SKlearn python library. The SKlearn library allowed the 

model to collect new data and get the accuracy, precision, recall, and F1 scores based on a 

supplied grand truth table. The output of this can be seen in Figure 4.8. 

 

TensorFlow-Lite 

After the TensorFlow model had been set up and had an acceptable accuracy of above 

80%, this model was then converted into a TensorFlow Lite applicable model. TensorFlow Lite is 

the mobile library for deploying models on mobile devices, microcontrollers, and other edge 

devices [43]. This was done since TensorFlow Lite is better optimized for less powerful 

hardware and to save on file space. Like the testing process for the TensorFlow model, both 

programs achieved the desired accuracy value(s) and used the SKlearn Python library and a 

ground truth table to calculate the numbers presented in Figure 4.8. There was no apparent hit 

to the models, accuracy, precision, or recall values at the cost of converting to a Tensor Flow 

Lite model. 
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Figure 4.8 

 
TensorFlow vs TensorFlow Lite 

 
 

Hardware Targets 

The model building and original testing happened on a Windows Personal Computer. The 

code was then transitioned to a Raspberry Pi 4 and Nvidia Jetson Nano for further testing and 

experiment implementation. Each hardware requires different dependencies, and software 

version builds are needed to get this working. The setup for the two devices is explained further 

in Chapter VI. Both devices were chosen for their ease of access and ability to scale down the 

actionability of smaller hardware use. The two devices also provided a platform to compare a 

system that will do machine learning completely on its CPU (Raspberry Pi 4) and one that will 

offload some work onto its GPU (Nvidia Jetson Nano). 
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Raspberry Pi 4 

The main implementation of the model was managed via the Raspberry Pi 4. The Pi 4 is 

built around the 64-bit Broadcom BCM2711BO quad-core A72 with 4GB LPDDR4 SD RAM [52]. 

Additional peripherals were a Raspberry Pi Camera Module 3 for the camera and a Samsung 128 

Evo Plus Memory card for memory storage. Figure 3.9 shows this configuration.  

 

 
 

Figure 4.9 
 

Raspberry Pi 4 Dev Unit 
 
 

Nvidia Jetson Nano 

The Jetson Nano is built around an ARM Cortex A57 MPCore processor and NVIDI's 

Maxwell architecture with 128 CUDA Cores. This system also has 4 GB of 64-bit LPDDR4 RAM 

[53]. Additional peripherals were a SanDisk Extreme Pro 256GB SD card and a Raspberry Pi 

Camera Module 2. The Pi Camera Module 3 could not be used at the time of writing because it 

was not supported. Figure 4.10 shows the layout of the dev kit. NVIDIA develops CUDA, a parallel 
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computing platform and programming model designed for general computing on GPUs [54]. 

Nanocam was the most readily available camera codebase for the Jetson Nano. It was used to 

control and take pictures. 

 

 
Figure 4.10 

 
Jetson Nano Dev Kit 

 

Since TensorFlow-Lite and TensorFlow both have CUDA processing support, there could be 

potential advantages it could bring compared to the Raspberry Pi. Implementing CUDA support 

was a simple addition since the codebase easily checks if it can be used, so implementation was 

straightforward. Both bits of hardware allowed for effective ways to start down-scaling hardware 
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and implementing the model. It is worth noting that while the original software target for the 

hardware was TensorFlow 2.15 (which is supported on the Raspberry Pi), the latest version of 

TensorFlow that works with the Jetson Nano is 2.7 at the time of writing. A drop to TensorFlow 

2.6 was required to have everything operational. Other software dependencies had to use 

different version numbers to become operational. Appendix B shows the general installation and 

setup process for the dev kit.  

 

Model ImplementaƟon on Hardware 

 Once a satisfactory model (80% accuracy or better) was created, it was applied to the two 

target hardware platforms. A program was designed to read all images from a file folder (this 

came from the data split and is the test data), classify the images, and place each image into the 

model's correct folder. Each of these folders represents one of the five classes of PV types and 

contains organized images. To help with future model training, it would note and then store a 

copy in another folder. The code determines the closeness of two probabilities by looking at the 

two highest probable classifications. After this, it subtracts the lowest of the two options from 

the highest. If this remainder is under 58%, the code determines the model was close to picking 

one of two classifications. Since there were two likely classification candidates, whether the 

image was chosen correctly or not, it is important to earmark this image as it could have value in 

future iterations of training the model. Upon further review, these images could be added back 

into the next model training session, allowing for a more robust model. 

Model Improvement and AddiƟonal EvaluaƟon 
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 Once hardware was tested and results were gathered, k-fold cross-validaƟon was applied 

to the model. This was done to beƩer, unbiasedly understand how the model was being 

implemented. Based on the results of k-fold cross-validaƟon, addiƟonal changes to model 

training and image dataset choices were made. These were as follows: 

 Reduce the image pool for each category to the same number of images (94) before 

augmentaƟon.  

o A random number generated selected these images to reduce the chance of 

human bias. 

 Try different numbers of augmented samples. 

 Look at the effect of adding and removing different categories of images. 

 Use a low number of epochs for rapid prototyping. 

All of these were done to help remove bias and improve the model. 

 

 

 

  



35 

 
 
 
 
 

CHAPTER V 
 

RESULTS 
 
 

Model TesƟng and CreaƟon 

 Each model is created with a five-class classification using categorical cross-entropy loss, 

a batch size of 32, and the Adam optimizer with a learning rate of 0.001. The initial model was 

created based on only five epochs, yielding a decent accuracy rating of 87.29%.  The model ended 

up with 154 MobileNetV2 layers. A generalization of these layers is shown in Table 5.1. 
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Table 5.1 Model Block Layer Breakdown 

Layer Description 

Input Layer The base layer takes in the input 

Convolution layer Takes an input, does batch normalization, and then a ReLU 

activation passes to the next block. 

Blocks 1 through 16 

(bottleneck layers) 

Filters out nodes from the previous layer to obtain a 

representation of the input with reduced dimensionality. 

[37,38] 

Convolutional Layer Takes an input, does batch normalization, and then a ReLU 

activation passes to the next block. 

Global average pooling 2d Structural regularizer to help prevent overfitting for the overall 

structure of the model. [65] 

Drop out layer Removes nodes from the NN to help reduce overfitting. 

Dense layer Layer that receives output from every neuron from the 

previous layer. Calculates the dot product of the input and the 

neuron weights. 
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During the training process, it was realized that the good and dusty databases had images with 

the same watermarks. There was worry that the model could perceive these watermarks as 

important features, adding an unwanted bias. The database was handpicked to fix this, and all 

watermarked images were removed. The model was then recreated, this time without 

watermarks. There was roughly a 2.2% accuracy increase and a 2.5% F1 score increase from 

removing all the watermarked images. With the proof of concept finished, a final pass was done. 

This last pass created the final model using the same classification and optimization methods, 

but this time with a validation accuracy process of one hundred epochs. This tightened the 

accuracy to 92.89% and the F1 score to 92.92%. (Table 5.2).  

 

Table 5.2 Comparison of Model Tests based on Epoch and Watermark Removal 
 

Epochs Accuracy Precision Recall F1 Score 

Five w/ Watermarks 87.29 88.21 87.28 86.86 

5 w/o Watermarks 89.51 89.86 89.51 89.37 

100 w/o Watermarks 92.89 93.29 92.89 92.92 

200 w/o Watermarks 92.31 92.67 92.31 92.36 

 

AŌer creaƟng a model of acceptable accuracy (aiming around 90%), the TensorFlow model was 

converted into a TensorFlow Lite model. The model dropped from 12.2 MB to 8.47 MB in size. 
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Analysis of Model ImplementaƟon on Hardware 

 The program designed for analysis reads all images from a file folder and places them into 

what the model deemed the correct folder. If an image had two areas close in tolerance, it would 

note and store a copy in another folder. This process worked because the code would take the 

two highest probable categories and subtract the most probable from the second most probable. 

If this number was less than 0.58, the two probabilities were close enough that the image might 

not be sorted correctly. For instance, Figure 5.1 – Dusty Solar Panel Deemed Good had a 

probability difference of 0.087693125, meaning the image might not be sorted correctly. The 

model claimed a probability of 4.5615301e-01 for being a dusty solar panel and a probability of 

5.4384613e-01 for being a good solar panel.  
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Figure 5.1 
 

Dusty Solar Panel Deemed Good 
 

While the image limit on the PC was not hit, the original image run of 2,250 images was beyond 

the limit for the target hardware. Thus, the image count was lowered to 1,576 for large-scale 

image testing as this number could still be allocated into one array in memory for the Raspberry 

Pi and Jetson Nano. Figure 5.2 shows a block diagram of how the code functions. 
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Figure 5.2 

 
Block Diagram of Predict_N_Sort.py 

 

Each run had the same images and was sorted into categories for each run. The code running on 

the Raspberry Pi with the Raspbian OS took the longest average processing time, 260.40 seconds 

(about 4.34 minutes) or 6.05 images per second. The Raspberry Pi running Bookworm processed 

and classified the images in approximately 129.1 seconds or 12.2 images per second, a substantial 

increase. The Jetson Nano processed these images at an average of roughly 195.9 seconds or 

8.04 images per second. These times and values are the average calculated across ten runs, 

covering image selection, preprocessing, normalization, and classification (Table 5.3). The 

Raspberry Pi completes all these tasks in roughly 66.78103 seconds, faster than the Jetson Nano. 
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Table 5.3 Predict_N_Sort.py Time Trials 
 

 Pi 4–- Raspbian Pi 4–- Bookworm Nano 

Se
co

nd
s 

(s
) p

er
 ru

n 

253.4199 129.2129 200.5513 
 

250.4071 129.0781 198.8279 

251.1060 129.0683 196.7776 

247.9717 128.9392 194.4261 

246.3445 129.1950 192.7811 

276.718708 129.2045 193.2558 

274.5008 128.9511 194.9502 

274.6640 129.3329 194.6129 

252.4989 128.9323 193.5942 

276.3599 129.0188 198.9661 

Average Time 260.3992 129.0933 195.8743 
 

 

While the time trials were running, a power meter tracked the power draw, and the 

maximum power used during the prediction was recorded, as shown in Table 5.4. This worst-case 

scenario facilitates determining how much power would be drawn in the field if large amounts 

of images were processed simultaneously. 
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Table 5.4 Max Power Usage While Predicting 
 

Run Pi 4–- Raspbian 

(Watts) 

Pi 4 – Bookworm 

(Watts) 

Nano 

(Watts) 

1 6.1 6.8 6.3 

2 5.7 6.8 6.6 

3 5.7 6.6 6.6 

4 5.7 6.7 6.7 

5 5.8 6.7 6.8 

6 5.7 6.7 6.8 

7 5.8 6.5 6.5 

8 5.8 6.8 6.7 

9 5.8 6.8 6.7 

10 5.9 6.8 6.5 

Average 5.8 6.72 6.62 

 

The power draw between the Bookworm OS and the Nano was 0.1 watts. The Raspberry 

Pi running the Raspbian OS used slightly less power overall. However, it did have to run for much 

longer. 
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A total of fifty-five images were flagged as close. Out of these fifty-five images, twenty of 

them were mislabeled. Only 107 images were labeled incorrectly. This means the test dataset 

had a failure rate of approximately 6.79%. Out of these images, the majority of the mislabeled 

were either in the Good or Dusty categories. Sixty-nine good images were labeled Dusty, while 

28 "Dusty" panels were labeled "Good." Table 5.5 shows a full breakdown of mislabeled images. 

 

Table 5.5 Breakdown of Mislabeled Images 

 Labeled 

# Incorrectly 
Labeled 

Broken Glass Dusty Good Hot Spots Microcracks 

Broken Glass 0 3 0 0 0 

Dusty 0 0 28 1 0 

Good 0 69 0 0 0 

Hot Spot 0 5 1 0 0 

Microcracks 0 0 0 0 0 

 

 

Camera Tests 

 With Camera testing, the "Predict_N_Sort.py" Python program was modified to take a 

picture at 224 x 224 pixels resolution. If it is not the correct resolution, it will resize and normalize 

it. After that, it will use the TensorFlow Lite model and place that image into a folder based on 

the model's decision. Figure 5.3 shows the block diagram of how this code functions. 
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Figure 5.3 

 
Programming Block Diagram for capImg_Predic_N_Sort.py 

 
 

Ten pictures were taken, and the time it took to complete this process was recorded, which is 

presented in Table 5.6. 
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Table 5.6 Picture and Sort Time Trials 

Image Capture Raspberry Pi 4 -
Raspbian 

Time (s) 

Raspberry Pi 4 -
Bookwork 

Time (s) 

Jetson Nano Time (s) 

1 0.3095 0.1929 0.5710 

2 0.2948 0.1943 0.3926 

3 0.2913 0.2330 0.3725 

4 0.3035 0.1922 0.4443 

5 0.3113 0.1967 0.4418 

6 0.3110 0.1368 0.4358 

7 0.2987 0.1891 0.4362 

8 0.3134 0.1948 0.4373 

9 0.3011 0.1381 0.3857 

10 0.2940 0.1821 0.3373 

Average 0.3029 0.1850 
 

0.4255 

 

The average Ɵme on the Raspberry Pi with Raspbian was roughly 0.303 seconds, which, if a 

human is in the loop taking pictures of solar panels, should give the system enough Ɵme to 

process and sort before the next image comes in. This is surprising, given how poorly it 

predicted a large swath of images. It even beat the Nano, which had an average of 0.425 

seconds. However, the Raspberry Pi running with Bookworm and picam2 beat both with an 

average of 0.185 seconds. Like before, the maximum power usage was recorded during the 

program's run-Ɵme, as shown in Table 5.7. The Nano power draw is slightly less than the 

Raspberry Pi, beaƟng it by an average of .14 WaƩs. It is worth noƟng that the power savings are 

offset by the addiƟonal code runƟme on this device. 
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Table 5.7 Max Power Usage Single Image Capture and Inference 

Run Pi 4–- Raspbian 

(Watts) 

Pi 4 – Bookworm 

(Watts) 

Nano 

(Watts) 

1 5.5 5.1 4.6 

2 5.6 5.1 4.7 

3 5.7 5.1 4.8 

4 6.0 5.2 5.2 

5 5.4 5.1 5.2 

6 5.9 5.1 5.2 

7 5.4 5.2 4.7 

8 5.8 5.1 4.7 

9 5.7 5.2 5.2 

10 5.8 5.2 5.2 

Average 5.68 5.14 4.95 
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Flight Times 

 The average power usage of the camera tests was lower than predicted. Power usage 

will impact flight Ɵme the least by keeping the run Ɵme short. This is because less waƩage is 

used over a smaller amount of Ɵme, and less drain will be done on the baƩery. Table 5.8 shows 

an esƟmated flight Ɵme based on the addiƟonal power draw of our two devices while running 

at different throƩle seƫngs. In this table, the power usage of the code was calculated based on 

the code running for 1 minute straight, using the equaƟon milliamp hours per minute/ max 

baƩery capacity. 

 

Table 5.8 EsƟmated Flight Times 
 

ThroƩle 

usage 

Flight 

Time -

base (Min) 

FT – 

Raspberry Pi 

4 Idle 

FT – Jetson 

Nano Idle 

FT – 

Raspberry Pi 4 

Image capture 

FT – Jetson 

Nano Image 

Capture 

100% 8.9286 
 

8.8256 

 
  

8.8974 

 
  

6.8496 

 
  

7.9143 

 

  

65% 21.7391 
 

21.1384 21.5553 12.5010 16.5691 
 

50% 38.4615 
 

36.6204 37.8900 16.6684 24.7811 

 

 It is worth noƟng that this esƟmate does not include the impact of addiƟonal weight on the 

UAV, so the esƟmate is not 100% accurate. However, these calculaƟons were based on the four 

propellers datasheet [55] used by the 3DR X8+. However, from the esƟmates, the Raspberry Pi 
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will affect the flight Ɵme more than the Nano. However, this addiƟonal power draw allows for 

the ability to take five images and classify them over a minute compared to the Nano, which can 

only do two images in the same amount of Ɵme. 

K-fold ValidaƟon and Model Adjustments 

 The other tests for model inference on devices and power consumpƟon have great 

results. The model was then put through a k-fold cross-validaƟon of k=10. Figure 5.4 shows the 

results of the 100 epoch model. The average score for all ten folds was just 26.67% accuracy, 

much lower than the original 92.89%. 

 

 

 
Figure 5.4 

 
Ten Fold Cross-ValidaƟon of the model 

 
 

The resulƟng averages show an average validaƟon loss of 2.17 and an average validaƟon 

accuracy of 26.6% for the model. The first thing that was done was a review of the dataset. 

Upon review, there were less than four good microcracked images. There were so few 

microcracked images in general that the category was removed, and the model was rebuilt and 

tested again. The accuracy increased to 30.12% in this case, and the loss dropped to 1.64. The 
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accuracy improvement makes sense since there is one less category. The worst-case scenario is 

a one-in-four chance of predicƟng versus the one-in-five chance of the original model. The loss 

rate drop shows that the microcracked images affected the model training. The next course of 

acƟon was to equalize the image pool in the four-image type dataset. There were ample dusty 

and good PV images, while there were only ten images for each category. AŌer searching for 

more images, the image count for hotspots and broken glass was increased to 94 images each. 

Since these images were close-up, aerial PV images, like those shown in Figure 5.5, were 

removed to remove the bias of addiƟonal features. For instance, a potenƟal bias that could be 

perceived is the roadway shown in Figure 5.5. While the image contains solar panels, if enough 

roadways are added to the dataset, the model could potenƟally start to learn them as a 

potenƟal feature. 
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Figure 5.5 

 
Example of Aerial Images Removed 

 
 

AŌer removing aerial images, a random number generator was used to pull 94 images for the 

good and dusty categories. For quick prototyping, the k-fold value was reduced to four from ten, 

and a total of ten epochs were used. The model was trained using k-fold validaƟon on just the 

94 images and an augmented image set comprised of 1,880 images. The original 3,000 images 

were compared to the original model for the final four categories. To understand how the 

model is learning from the classes provided, only two classes were trained. AŌer the 94-image 

test was completed, another test with 1,880 images was performed. AŌer this, the broken glass 
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class was added to the training process, training on both 94 and 1,880 images each. AŌer those 

tests were completed, the final class of hot spots was added. Table 5.9 shows the average 

accuracy results for each test with un-augmented and augmented images, as well as the 

accuracy aŌer each class was added back into the model. Tables 5.10, 5.11, and 5.12 present 

accuracy results via a confusion matrix for two classes (dusty and good), three classes (broken 

glass, dusty, and good), and four classes (broken glass, dusty, good, and hotspots, respecƟvely. 

These tables break down the accuracy of each class, the overall accuracy, and a breakdown of 

what the model inferred each test image. 
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Table 5.9 K-fold Results 
 

Average ValidaƟon Accuracy (%) ValidaƟon Loss 

Dusty/Good @94 images 60.07 0.88 

Dusty/Good @1880 images 56.55 0.88 

Broken/Dusty/Good @94 

images 

30.56 1.47 

Broken/Dusty/Good @1880 

images 

35.12 1.35 

Broken/Dusty/Good/Hotspot 

@94 images 

25.30 1.86 

Broken/Dusty/Good/Hotspot 

@1880 images 

28.02 1.53 

Broken/Dusty/Good/Hotspot 

@3000 images 

28.12 1.49 
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Table 5.10 Confusion Matrix: Dusty and Good 
 

94 images   1880 Images 
  Dusty Good Accuracy    Dusty Good Accuracy 
Dusty 35 3 0.921053  Dusty 37 1 0.973684 
Good 14 24 0.631579  Good 21 17 0.447368 

   0.517544     0.473684 
 

 

Table 5.11 Confusion Matrix: Broken Glass, Dusty, and Good 
 

94 Images  1880 Images 

  Broken 
Dust
y 

Goo
d Accuracy    Broken 

Dust
y 

Goo
d Accuracy 

Broken 29 15 16 0.483333  Broken 22 30 8 0.366667 
Dusty 32 13 15 0.216667  Dusty 13 34 13 0.566667 
Good 36 17 7 0.116667  Good 7 30 23 0.383333 

    0.272222      0.438889 
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Table 5.12 Confusion Matrix: Broken Glass, Dusty, Good, and Hotspots 
 

94 Images 

  Broken Dusty Good Hotspot Accuracy 
Broken 24 6 20 10 0.4000 

Dusty 15 18 18 9 0.3000 

Good 11 6 35 8 0.5833 
HotSpot 10 15 10 25 0.4167 

      0.5667 

       
1880 Images 

  Broken Dusty Good Hotspot Accuracy 

Broken 36 13 8 3 0.6000 

Dusty 8 29 14 9 0.4833 
Good 13 17 28 2 0.4667 

HotSpot 22 12 14 12 0.2000 

     0.5833 

      
3000 Images 

  Broken Dusty Good Hotspot Accuracy 

Broken 20 14 11 15 0.3333 
Dusty 14 34 6 6 0.5667 

Good 15 17 27 1 0.4500 
HotSpot 3 25 12 20 0.3333 

     0.5611 
 

 

The average loss decreased except for the dusty and good PV categories (Table 5.9). For 

example, broken glass, dusty, and good dropped 1.47% to 1.35%, and the average accuracy 

went up from 30.56% to 35.12%, which is expected. As more data is used to train the model, 

the model learns a more accurate representaƟon of the feature distribuƟons used to separate 

one class from another. Overall, the model's loss improved, which is a good indicator that over-

fiƫng is not occurring. However, with such a finite number of images, the data was augmented 
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to 2,000% for 1,880 and up to 3,191% for 3,000 images. There is concern that augmenƟng the 

base dataset by such a large percentage is biasing the model. Table 5.12 shows there is an 

actual trend of dropping accuracy when the model is trained on 3,000 augmented images 

compared to 1,880 augmented images. The original model had a loss rate of 2.17 and an 

accuracy of 26.6%, with the original five-class dataset of ten images for the broken glass, 

hotspot, and microcracked classes. Removing the microcracked images resulted in a loss of 1.64 

and an accuracy of 30.12%. The model's accuracy drops when the number of images per class is 

kept the same. Data augmentaƟon may create a bias that results in higher accuracy. For a less 

biased model, it is suggested that the number of images per class be the same and the 

augmentaƟon of the dataset be limited. A beƩer approach would be to collect and add 

addiƟonal images to each class. These images could include any test images labeled "close" 

from previous tests, but further research is needed to ensure the model is not overfiƫng. One 

of the opƟons to help ensure overfiƫng is not occurring is just to get more images. However, 

since that can be an issue, lowering the number of MobileNet layers and simplifying the model 

is one opƟon to help prevent overfiƫng with smaller datasets. The 154 MobileNet layers may 

be too deep of a CNN for the model to learn properly. Another opƟon could be expanding the 

number of classes, adding classes like bird droppings, vegetaƟon growth, etc. This could give the 

model more data and potenƟal new features to help differenƟate the current classes.   
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CHAPTER VI  
 

FUTURE WORK 
 
 

There are still concerns about how small the image pool is for each class within the 

dataset before augmentation. One possible approach to dealing with this concern is the selection 

of a classifier that works better with smaller datasets. This is in addition to updating the model 

with more images as they are captured by onboard cameras or discovered through additional 

searches. Continuously updating the model will allow for a better, more robust inference system. 

An investigation into image distortion, resulting from resizing images to 224-by-224 pixel images, 

impacts on model performance. The current device choice running our model can classify images 

correctly while having a minor impact on flight time. This model can be used to classify and report 

damage to PVs. Given that the end goal is to deploy and integrate this model on a UAV, an 

additional hardware choice could still be made. Smaller edge devices could still be explored as 

the weight of the current hardware choices on top of the potential weight of any other 

instrumentation could cause an additional impact on flight time. TensorFlow Lite allows even 

smaller edge devices to use less power and weight. A device like Espressif's ESP32-S3-EYE or a 

similar edge device could be considered if power and weight are issues with the original hardware 

targets. However, switching the software codebase from Python to C++ could be difficult on some 

edge devices like the Espressif. A choice of whether to use the UAV's camera or an additional 
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mounted camera to acquire images still needs to be made. If using the UAV's onboard camera, a 

process to interface and use these images still needs to be created. After the camera interface is 

developed and integrated into the UAV, an image Geo-tagging process will need to be made, 

integrated, and tested. 
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CHAPTER VII  
 

CONCLUSION 
 
 

This study demonstrated that a MobileNetV2 ConvoluƟon Neural Network classificaƟon 

model for Solar Panel health could be determined in real-Ɵme. This model can classify four 

types of panel issues and determine if a panel has no issues, all while having a short inference 

Ɵme. Currently, the latest OS on the Raspberry Pi is the best opƟon. The Pi, using this small 5-

class classificaƟon model and program, can take, normalize, and process a new image in roughly 

0.185 seconds. This allowed the next steps to puƫng this on a UAV, taking real-world photos, 

and processing on the fly. Using a TensorFlow Lite model also allows scaling down for other 

lightweight, low-power systems that could further extend the product's baƩery life. Meanwhile, 

the 92.89% accuracy of the originally tested model appears to be misleading based on the k-fold 

validaƟon results. Future dataset tuning and more image data should allow for a more robust 

model. The next step should be to start overlaying GPS data on images. The GPS data will be 

processed to allow the user to quickly locate a given panel aŌer idenƟfying a damaged panel. 

Overall, the proposed method will enable users to find and diagnose solar panel issues rapidly, 

thus allowing quicker troubleshooƟng and repair. 
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SETUP RASPBERRY PI 4 

 

 

 

 

 

 

 

 

 

 

 

 



66 

Before the Raspberry Pi is hooked up, either download the Raspberry Pi Imager soŌware 

or be prepared to install it over the ethernet via SSH. This example will be using the 64-bit 

Raspberry Pi OS. Select RASPBERRY PI OS (64-bit) FULL (the current version as of wriƟng is 

Bookworm). Launch Raspberry Pi Imager and select RASPBERRYPI 4 for the device and 

RASPBERRY PI OS (64-BIT) for the OperaƟng system. Also, select the locaƟon of the SD CARD. 

See Figure A.1 SD Card Set up – Raspberry Pi Imager.  

 

 

 

Figure A.1 

SD Card Set up – Raspberry Pi Imager 
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When asked to customize OS seƫngs, select EDIT SETTINGS and update the following: Set the 

username to pi and a password that can be remembered. See Figure A.2—Raspberry Pi OS 

CustomizaƟon Seƫngs. 

 

 

Figure A.2 

Raspberry Pi OS CustomizaƟon Seƫngs 

 

ConƟnue with the installaƟon process. Once the SD card is imaged, insert it into the Raspberry 

Pi 4 and turn it on. Log in and open the terminal to run the following commands: sudo apt 

update && sudo apt upgrade -y. This will make sure that the device is fully up to date. Install the 
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dev environment in the terminal with the Sudo apt-get install code. Once installed, launch 

Visual Studio Code by typing the code in the terminal and hiƫng enter. Click the extensions 

buƩon, type in Python, and click install for the Python extension. See Figure A.3 – Visual Studio 

Code Python Extension Install on Raspberry Pi 4. Once the code is installed, install the Python 

extension to debug or edit the codebase. 

 

 

Figure A.3 

Visual Studio Code Python Extension Install 

On Raspberry Pi 4 

 

While the extension installs the rest of the code dependencies, go back to the terminal and run 

Sudo rm /usr/lib/python3.XX/EXTERNALLY-MANAGED (replace xx with python version number; 



69 

currently it is 11.) and Sudo pip3 install numpy matplotlib scikit-learn augmentor split-folders 

pyyaml opencv-python tensorflow keras keyboard picamera2. See Figure A.4 – Installing 

Dependencies on Raspberry Pi 4. 

 

 

Figure A.4 
Installing Dependencies on Raspberry Pi 4 

 

Once all the dependencies are installed, copy the AI_Image_Solar Folder from 

AI_Image_Solar_pi_Bookworm to /home/pi. Return to Visual Studio Code, go to the explorer 
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tab, and open the AI_Image_Solar Folder by clicking open folder, selecting the AI_Image_Solar 

folder, and clicking open. Figure A.5 – Raspberry Pi Visual Studio Developer Environment Set up.  

 

 

Figure A.5 

Raspberry Pi Visual Studio Developer Environment Set Up 

 

With the dev environment fully loaded, go to codes Predict_N_Sort.py and click the run python 

file to verify everything is working correctly in Visual Studio code. There should be some files in 

the unsorted folder for it to sort through. Once it's complete, there should see some of the Sort 
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Folders now have five new folders, correlating to the five-panel types, and that all the images 

from the unsorted file are moved into them. To test if the camera is operational, we will need 

to run the Python code as root. Running either image_capture_picam2.py, 

capIMG_Predict_N_Sort.py, or capIMG_Predict_N_Sort_instant.py as root. By using sudo 

python <pythonfilename.py>. To do this, open or reuse the existing instance of the terminal, 

use commands cd /AI_Image_Solar/codes, and then sudo python capIMG_Predict_N_Sort.py. 

See Figure A.6 Demonstration of capIMG_Predict_N_Sort.py. There will be a command asking 

to press p to take a picture or e to exit the code.  
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Figure A.6  

Demonstration of capIMG_Predict_N_Sort.py 

 

The image will be shown sorted into a folder. The process of setting up the Raspberry Pi 4 is 

finished. 
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The Jetson Nano is a GPU-focused device with quite a few more steps to set up 

compared to the Raspberry Pi. Three bits of soŌware are needed to set up the Nano. First, an 

SD Card FormaƩer can be found at 

hƩps://www.sdcard.org/downloads/formaƩer_4/eula_windows/. The latest version of Jetpack 

(4.6.3 at the Ɵme of wriƟng) is hƩps://developer.nvidia.com/jetson-nano-sd-card-image, and 

Etcher, the imaging soŌware is located at hƩps://www.balena.io/etcher. 

Launch the SD Card formaƫng soŌware shown in Figure B.1. Select the hard drive (drive E:/ in 

the example). Select "quick format," then leave the volume label secƟon blank. Click format.  

 

 

Figure B.1  
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SD Card Formaƫng 

 

Unzip the downloaded image folder for the Jetson Nano SDK from wherever it has been 

downloaded. Then launch Etcher. Click "Select image" and go to the extracted images folder. 

Select "sd-blob-b01.img. Then click "Select Target," selecƟng the formaƩed SD card. Then click 

"Flash". See Figure B.2 for what this should look like.  

 

 

Figure B.2 

Balena Etcher Setup 
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Once finished flashing the device, take the SD card out and plug it into the Jetson Nano. Power 

on the Nano; a prompt will appear with the first-Ɵme setup informaƟon. Accept the terms of 

Nvidia's licenses and the other system configuraƟons like language and English keyboard. For 

the username, we used g and set a password; for the APP, the parƟƟon size is set to the 

maximum megabytes. For Nvpmodel mode select MAXN. This should begin the system 

configuraƟon process. As menƟoned earlier, the Nano is a bit trickier to set up than the 

Raspberry Pi, so we have a few more commands to execute. Once logged in, run sudo apt 

update && sudo apt full-upgrade. Figure B.3 – Full System Update – Linux  

 

 

Figure B.3 
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Full system Update - Linux 

 

A prompt will ask if you want to conƟnue typing y and hiƫng enter. During the update, a 

prompt asking to update nvidia-tegra.conf and nv-oem-config-post. Select Y. Another propt will 

also ask to restart the Docker daemon. Select Yes. Once done, run reboot, go back into the 

terminal, and run sudo apt install --fix-broken -o Dpkg::OpƟons::="--force-overwrite". Then, type 

reboot. Once rebooted, we will begin installing the dependencies. To install the dependinces, 

we have a few lines of code we will need to type up. Run the following lines of code in this exact 

order, as the dependency manager on the Nano does not appear to be as robust as the 

Raspberry Pi's. Thus, if programs are not installed in the right order, things may not work as 

intended. Run the following lines of code: 

sudo apt-get install git cmake 

sudo apt-get install python3-dev 

sudo apt-get install python3-pip 

python3 -m pip install --upgrade pip 

pip3 install -U pip testresources setuptools 

sudo apt-get install libfreetype6-dev python3-setuptools libatlas-base-dev libhdf5-serial-dev 

hdf5-tools libhdf5-dev gfortran libc-ares-dev libeigen3-dev zlib1g-dev zip libjpeg8-dev liblapack-

dev libblas-dev libfreetype6-dev protobuf-compiler libprotobuf-dev openssl libssl-dev libcurl4-

openssl-dev  
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pip3 install -U numpy==1.19.3 future==0.18.2 mock==3.0.5 gast==0.4.0 protobuf pybind11 

pkgconfig packaging  

AŌer running these lines of commands, type reboot. 

Now that most of the dependencies are installed. Begin downloading TensorFlow and Keras 

onto the Jetson Nano by opening up a terminal and running the following commands: 

Sudo ln -s /usr/include/locale.h /usr/include/xlocale.h 

pip3 install --verbose 'protobuf<4' 'Cython<3' 

 

pip3 install --extra-index-url hƩps://developer.download.nvidia.com/compute/redist/jp/v46 

tensorflow==2.6.2+nv21.12 

pip3 install keras==2.6 

During the installaƟon of Tensorflow 2.6.2, there will be a long wait for a wheel of numpy 

version 1.12 to be built. This is shown in Figure B.4 – Numpy Wheel. Trust the process, and it 

will eventually get done.  



79 

 

Figure B.4 

Numpy Wheel 

 

AŌer Tensorflow and Keras are installed, we will conƟnue to download a few more 

dependencies for the code base by running the following commands: 

pip3 install matplotlib augmentor split-folders pyyaml keyboard scikit-learn 

sudo pip install scipy==1.5.4 

sudo apt-get install nano 

sudo apt-get install dphys-swapfile 

pip3 install nanocamera 
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reboot 

AŌer these are installed, the final two dependencies can be installed: a OpenCV version 

allowing us to use Nvidia's CUDA cores. First, build OpenCV code provided by QEngineering.eu. 

This secƟon will cover the steps to install this code; otherwise, for more informaƟon, please go 

to their website and read more about it. 

Run the command sudo nano /sbin/dphys-swapfile. This will open the physical swapfile locaƟon 

and scroll down to the CONF_MAXSWAP variable. Change its value to 4096. Figure B.5 – 

sbin/dphys-swapfile edit shows what this should look like. Hit "CTRL+X" to save and exit the file.  

 

Figure B.5 

sbin/dphys-swapfile edit 
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We now also need to edit the /etc/dphys-swapfile seƫngs as well. Run the command sudo nano 

/etc/dphys-swapfile. 

Find and uncomment (remove the #) in the file and add 4096 to the variable, as shown in Figure 

B.6 – etc/dphys-swapfile edit. Just like before, hit "Ctrl+x" to exit and save the file. 

 

 

Figure B.6 

etc/dphys-swapfile edit 

 

AŌer saving the etc/dphys-swapfile file, run the reboot command. Once rebooted, reopen the 

terminal and run the command free -m. The output of which should match Figure B.7 – Correct 

Memory Management. 
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Figure B.7 

Correct Memory Management 

 

Next, we will run the commands to start installing the custom OpenCV install for the Jetson 

Nano. A word of warning: this, at a minimum, will take three and a half hours. In some cases, it 

takes up to twelve hours to build and install. Run the following commands in the terminal: 

wget hƩps://github.com/Qengineering/Install-OpenCV-Jetson-Nano/raw/main/OpenCV-4-9-

0.sh 

sudo chmod 755 ./OpenCV-4-9-0.sh 

./OpenCV-4-9-0.sh 
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Once the codebase has been built successfully, a screen similar to that in Figure B.8 will appear. 

Enter the root password and let it finish installing.  

 

Figure B.8 

OpenCV Successfully Built 

 

AŌer OpenCV has been successfully installed. Run the following commands:  

rm OpenCV-4-9-0.sh 

sudo /etc/init.d/dphys-swapfile stop 

sudo apt-get remove --purge dphys-swapfile 

sudo rm -rf ~/opencv 

sudo rm -rf ~/opencv_contrib 
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reboot 

There is a bit more of a process to get the development environment installed and working. This 

is since Visual Studio Code is not naƟvely supported on the Nano. To install, run the following 

commands: 

git clone hƩps://github.com/JetsonHacksNano/installVSCode.git 

cd installVSCode 

nano instalVSCodeWithPython.sh./installVSCodeWithPython.sh 

Since, at the Ɵme of wriƟng, the latest version of Visual Studio Code did not work, we needed to 

set the .sh file to install a known good version, which is currently 1.80.0. Figure B.9 - Visual 

Studio Code Setup shows what this should look like. AŌer adding in 1.80.0, hit "Ctrl + x" and 

save the file. Then run the command ./installVSCodeWithPython.sh. AŌer this, Visual Studio can 

be run by typing code into the terminal. 
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Figure B.9 

Visual Studio Code Setup 
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Once all the Visual Studio code and the dependencies are installed, copy the AI_Image_Solar Folder from 

AI_Image_Solar_pi_Jetson_Nano to /home/. Return to Visual Studio Code, Go to the explorer tab, and 

open the AI_Image_Solar Folder by clicking the open folder, selecƟng the AI_Image_Solar folder, and 

clicking open. Run Predict_N_Sort.py to verify the code base is working. We should see the unsorted 

folder is now empty, and the test images are sorted into the correct categories. 
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