

SOLAR PANEL DAMAGE IDENTIFICATION USING TENSORFLOW LITE

By

Garrick D. Muncie

Abdul Ofoli Raga Ahmed

UC FoundaƟon Professor Associate Professor of

of Electrical Engineering Electrical Engineering

(Chair) (CommiƩee Member)

Donald R Reising

Guerry and UC FoundaƟon Associate

Professor of Electrical Engineering

(CommiƩee Member)

ii

SOLAR PANEL DAMAGE IDENTIFICATION USING TENSORFLOW LITE

By

Garrick D. Muncie

A Thesis SubmiƩed to the Faculty of the University of
Tennessee at ChaƩanooga in ParƟal

Fulfillment of the Requirements of the Degree
Of Master of Science in Engineering

The University of Tennessee at ChaƩanooga
ChaƩanooga, Tennessee

August 2024

iii

ABSTRACT

The number of utility-scale PV installations is rising, with a power capacity of 12.5

Gigawatts installed in 2021, 10.4 in 2022, and an estimated 24 Gigawatts installed in 2023 [1].

With larger-scale installations, quicker ways of identifying and locating damaged PV arrays are

needed. The solution presented in this thesis is to use drones to capture aerial photos and

TensorFlow-Lite and Keras deep learning methods to determine if a panel has defects, such as

debris, cracked panels, and hotspots. The model features an execution time of 0.185 seconds

per picture. In addition, the model will run on an embedded system with a relatively low impact

on power consumption, minimizing the reduction of flight time. The Raspberry Pi has an

approximate 0.1-minute effect on flight time while idling and with the worst-case scenario of

affecting flight time by approximately two minutes if left running for the entire flight.

iv

DEDICATION

 I would like to dedicate this thesis to my loving family, who have pushed me to beƩer

myself throughout the years. I want to give a special callout to all my grandparents, who were

always there for me and pushed me to explore the world, and my loving girlfriend, who had to

put up with me while I furiously worked my way through my master's degree. It also convinced

me not to give up and to keep pushing through while I did school and work.

v

ACKNOWLEDGMENTS

I would like to express my thanks to Dr. Ofoli for his guidance and the opportunity to

work on this endeavor. Dr. Ahmed and Dr. Reising, thank you for your guidance throughout the

year and for serving on the thesis commiƩee on the short turnaround of this venture. The

SMART Scholarship and Arnold Air Force Base for giving me the opportunity to work and be a

student at the same Ɵme.

vi

TABLE OF CONTENTS

ABSTRACT …….…….……iii

DEDICATION .. iv

ACKNOWLEDGEMENTS .. v

LIST OF TABLES .. viii

LIST OF FIGURES .. ix

LIST OF ABBREVIATIONS ... x

LIST OF SYMBOLS .. xi

CHAPTER

I. INTRODUCTION ... 1

Research QuesƟons ... 2

II. BACKGROUND ... 3

Neural Networks ... 3
Deep Learning ... 3
ConvoluƟonal Neural Networks .. 4
MobileNetV2 ... 5
Terminology .. 7
PV Damage Types .. 8
K-Fold Cross ValidaƟon .. 9

III. RELATED WORK ... 11

Deep Learning with Solar Panel Damage .. 11
Deep Learning on Edge Devices and Microcontrollers ... 13

vii

Deep Learning with Unmanned Aerial Vehicles ... 14
Summary of Literature .. 17

IV. METHODOLOGY .. 19

Model ImplementaƟon ... 19
 Dataset .. 19
 Preprocessing .. 24
 Neural Network ConstrucƟon – TensorFlow ... 25
 TensorFlow Model TesƟng ... 28
 TensorFlow-Lite ... 29

 Hardware Targets ... 30
 Raspberry Pi 4 ... 31
 Nvidia Jetson Nano ... 31
 Model ImplementaƟon on Hardware ... 33
 Model Improvement and AddiƟonal EvaluaƟon .. 33

V. RESULTS ... 35

Model TesƟng and CreaƟon .. 35
Analysis of Model ImplementaƟon on Hardware ... 38
Camera Tests ... 43

 Flight Times ... 47
K-fold ValidaƟon and Model Adjustments .. 48

VI. FUTURE WORK .. 56

VII. CONCLUSION ... 58

REFERENCES .. 59

APPENDIX

A. Setup Raspberry PI 4 ... 65
B. Setup Jetson Nano .. 73

VITA ... 87

viii

LIST OF TABLES

3.1 Literature Comparison .. 19

4.1 Number of Each Image Type ... 22

5.1 Model Block Layer Breakdown .. 37

5.2 Comparison of Model Tests based on Epoch and Watermark Removal 38

5.3 Predict_N_Sort.py Time Trials ... 42

5.4 Max Power Usage While PredicƟng .. 43

5.5 Breakdown of Mislabeled Images ... 44

5.6 Picture and Sort Time Trials .. 46

5.7 Max Power Usage Single Image Capture and Inference ... 47

5.8 Estimated Flight Times .. 48

5.9 K-fold Results .. 53

5.10 Confusion Matrix: Dusty and Good... 54

5.11 Confusion Matrix: Broken Glass, Dusty, and Good ... 54

5.12 Confusion Matrix: Broken Glass, Dusty, Good, and Hotspots .. 55

ix

LIST OF FIGURES

2.1 IllustraƟon of CNN with a Single Hidden Layer ... 5

2.2 MobileNetV2 Architecture Sketch .. 7

2.3 K-fold Cross-ValidaƟon k Equals Four Sketch .. 11

4.1 Outliers Removed From Dataset ... 22

4.2 CollecƟon of Sample Images ... 23

4.3 Skewed Image Example ... 25

4.4 NormalizaƟon of an Image .. 26

4.5 Image to be Modeled .. 27

4.6 Block One Heatmap .. 28

4.7 Program Flow for Model CreaƟon and TesƟng ... 29

4.8 TensorFlow vs. TensorFlow Lite ... 31

4.9 Raspberry Pi 4 Dev Unit .. 32

4.10 Jetson Nano Dev Kit .. 33

5.1 Dusty Solar Panel Deemed Good .. 40

5.2 Block Diagram of Predict_N_Sort.py .. 41

5.3 Programming Block Diagram for capImg_Predic_N_Sort.py .. 45

5.4 Ten Fold Cross ValidaƟon of the model... 49

5.5 Example of Aerial Images Removed .. 51

x

LIST OF ABBREVIATIONS

PV, Photo Voltaic

UAV, Unmanned Aerial Vehicle

GPU, Graphic Processing Unit

CNN, ConvoluƟonal Neural Network

GPS, Global PosiƟoning System

UV, Ultraviolet

EL, Electroluminescence

IR, Infrared

ReLU, RecƟfied Linear Unit

VGG16, Visual Geometry Group 16

MCC, MaƩhews CorrelaƟon Coefficient

ResNet, Residual Neural Network

YOLO, You Only Look Once

SGD, StochasƟc Gradient Descent

xi

LIST OF SYMBOLS

∑, SummaƟon Symbol

1

CHAPTER I

INTRODUCTION

 With the conƟnuous growth of residenƟal and uƟlity-scale photovoltaic (PV)

sources (solar panels), it is of growing importance for uƟliƟes to gain an increased

understanding of solar panels and how the PV’s status affects the uƟlity system[2]. The

number of uƟlity-scale PV installaƟons is rising, with a power capacity of 12.5 GigawaƩs

installed in 2021, 10.4 in 2022, and an esƟmated 24 GigawaƩs installed in 2023 [1]. This

growth requires improvements to current damage collecƟon and repair diagnosƟcs

soluƟons and new soluƟons to diagnose issues. Current soluƟons in machine learning

focus on certain subsets of damage collecƟon and repair diagnosƟcs [3-25]. The soluƟon

historically has been based on different photo types, electroluminescence, Infrared

Imagery, sƟll images, or a combinaƟon. These photos have been taken from unmanned

aerial vehicles (UAV) or personnel. The deep learning on these images has happened

mainly with off-site compuƟng [4-18, 24, 26-30]. However, a currently sought-aŌer

soluƟon is flying over a uƟlity field with a UAV, taking pictures, Geo-tagging its locaƟon

with Global PosiƟoning Systems (GPS), and processing the image with a machine

learning neural network. The images are then classified into areas for a technician to

understand what is wrong with the panel and send them on their way to fix the

idenƟfied panel. This has been done to some varying degrees [2-30]. A review of the

2

literature reveals that few soluƟons seem to cover a large span of images and damage

types and compare between different devices. This thesis seeks to close this gap.

Research QuesƟons

 In this thesis, the following research quesƟons were asked:

 With the wide array of PV damage types, is there a way to classify types of

damage with a single model?

 What is the power consumpƟon differences between different edge devices?

(such as a Raspberry Pi 4 or Nvidia Jetson Nano)

o Will power consumpƟon differences affect drone flight Ɵmes?

3

CHAPTER II

BACKGROUND

Neural Networks

 Neural networks represent a class of machine learning models loosely inspired by

studies about the central nervous system. Each Neural Network comprises several

interconnected "neurons" arranged into "layers." These neurons pass informaƟon messages to

other neurons in the next layer. The first studies started in the early 1950s and have grown

exponenƟally in recent years [31]. At its basic premise, machine learning is broken up into two

subsets: unsupervised and supervised machine learning. In unsupervised learning, where there

is no known output, the learning algorithm is given input data and is asked to extract knowledge

from said data [32]. Supervised learning is one of the most common and successful types of

machine learning. It is used whenever a given input is used to predict. For supervised learning

algorithms to work, they require example inputs together with corresponding example outputs.

[32].

Deep Learning

 Deep learning is currently one of the most popular approaches to machine learning. Deep

learning started geƫng its name when these types of neural networks uƟlized three to five layers.

Research on the nature of deep learning has existed for quite some Ɵme. However, the complexity

4

and computaƟonal power required of deep learning hindered its adopƟon and applicaƟon unƟl

the mid-2000s. With the development of advanced processing units and large exponenƟal

increases in data, there has been a resurgence in deep learning research. These advancements

have now allowed for networks with more than 200 layers [31,33].

ConvoluƟonal Neural Networks

 ConvoluƟonal neural networks (CNNs) have been applied to visual tasks since the late

1980s. However, despite a few scaƩered applicaƟons, they were dormant unƟl the mid-2000s

when developments in compuƟng power and the advent of large amounts of labeled data,

supplemented by improved algorithms, contributed to their advancement and brought them to

the forefront of a neural network renaissance that has seen rapid progression since 2012 [34].

CNNs consist of input, hidden, and output layers. The hidden layers are added to the network

because the addiƟonal neurons can facilitate learning more complex paƩerns in the training

data. They are called hidden because they do not directly connect with the input or the output

layer of the Neural Network [35]. Hidden layers allow the model to calculate more coefficients

(weights) for the model to learn [36]. These weights are numerical values that determine the

strength of a connecƟon or signal between nodes. The value of these weights is adjusted in the

training phase of a Neural Network and ulƟmately helps define the output of the predicƟve

system. Figure 2.1 provides a representaƟve illustraƟon of a CNN comprised of an input, a single

hidden layer, and an output layer.

5

Figure 2.1

IllustraƟon of CNN with a Single Hidden Layer

There are many different architectures and models from which to build a CNN, and various

methods are menƟoned in this paper, such as You Only Look Once (YOLO), Residual Networks

(ResNets), and Very Deep ConvoluƟonal Networks (VGG). However, this paper focuses on the

MobileNetV2 architecture.

MobileNetV2

 The MobileNetV2 architecture is based on an inverted residual structure where the

input and output of the residual block are thin boƩleneck layers opposite to tradiƟonal residual

models, which use expanded representaƟons in the input. MobileNetV2 uses lightweight depth-

wise convoluƟons to filter features in the intermediate expansion layer [2]. This allows for a

6

smaller model size that can be created in a shorter Ɵme span while also allowing the achieved

model accuracy to be compeƟƟve with more computaƟonally expensive models [37].

MobileNet uses a boƩleneck structure to reduce the computaƟonal cost by using 1x1

convoluƟons to reduce the number of channels before applying depth-wise separable

convoluƟons [37,38]. A MobileNet adds addiƟonal layers before the classifier layer in typical

CNNs. These new core layers are built upon separate depth-wise filters. These depth-wise filters

are done through depth-wise convoluƟon, allowing the model to shrink the hyperparameter's

width mulƟplier and resoluƟon mulƟpliers [38,51]. The layered architecture of MobileNetV2 is

shown in Figure 2.2.

Figure 2.2

MobileNetV2 Architecture Sketch

7

Terminology

Some basic definiƟons of Machine Learning terms shall be relayed here.

 Model: The result of training an algorithm based on data supplied. The model is used to

make inferences based on newly inpuƩed data.

 Batch size: number of samples fed into the network algorithm at a Ɵme during model

training.

 Epoch: One epoch is a single pass of batch data through the algorithm (neural network).

AŌer each pass, depending on the opƟmizer, weights to the algorithm will be adjusted

for the next pass.

 OpƟmizer: An algorithm to determine weight updates to the learning rates of the model

during training. TradiƟonally, this is done using some form of stochasƟc gradient descent

(SGD) procedure. However, newer algorithms like Adam use a combinaƟon of gradient

algorithms and other methods. For instance, Adam uses the AdapƟve Gradient

Algorithm and Root Mean Square PropagaƟon to determine weights effecƟvely in deep

learning models.

 Categorical Cross-entropy: ObjecƟve funcƟon of Keras, which defines a mulƟclass

logarithmic loss. This compares the distribuƟon of the predicƟons with the true

distribuƟon, with the probability of the true class set to a one and zero for other classes.

If the true class is c and the predicƟon is y, then the categorical cross-entropy is defined

as [19]:

L(c,p) = - ∑ ci ln(pi)

8

 Accuracy: The metric to evaluate the training of the model. It's the proporƟon of correct

predicƟons concerning the total number of predicƟons.

 Precision: The metric used to evaluate the training of the model is the proporƟon of

correct posiƟve predicƟons concerning the number of correct and incorrect posiƟve

predicƟons.

 Recall: The metric to evaluate the training of the model is the proporƟon of correct

posiƟve predicƟons concerning the actual number of posiƟve predicƟons

 F1 Score: The metric to evaluate the training of the model. It's the harmonic mean of the

precision and recall values.

 SoŌmax: Layer type takes the feature as input and calculates the probabiliƟes as outputs

for each class. Then, select the highest probability score.

 RecƟfied Linear Unit (ReLU) AcƟvaƟon: a piecewise linear funcƟon that will output the

input directly if the input is posiƟve; else, it will output zero. Thus, if the input is

negaƟve, it gets converted to zero, and the inpuƩed neuron does not get acƟvated. ReLU

is the default acƟvaƟon funcƟon for most neural networks.

PV Damage Types

There are many common types of PV damage; however, some more common effects are

hotspots and broken glass [39]. Dust covering the PV and microcracks are also damage types

affecƟng energy producƟon.

 Hotspots: Defects that form small spots that dissipate the generated current in the form

of heat [3].

9

 Dust: Dust is not just sand and dust parƟcles; this can also be related to fallen tree limbs

or any other obstrucƟon that forms an obstrucƟon between the panel and the Sun.

 Microcracks: Ɵny cracks that cannot be seen with the human eye.

 Broken Glass: As the name suggests, the PV's glass panel is damaged, prevenƟng it from

funcƟoning properly.

K-Fold Cross ValidaƟon

 With one test on model data, the algorithm could get lucky with the results and have great

data; k-fold cross-validaƟon allows one to train and evaluate a model mulƟple Ɵmes to ensure

the model acts as expected. The k is a variable that represents how many splits and tests one will

do on the model's dataset. In general, the data set is split into k "folds." One of the folds will be

selected as the validaƟon dataset, while the remaining will become the training dataset. The

model will be evaluated and trained on this data, and an evaluaƟon score will be created using

the validaƟon dataset. Since this is a method to evaluate a model design, not a parƟcular training,

the fold data will report the average performance of the model [64]. Figure 2.3 shows a visual

representaƟon of the K-fold process for k, which equals four in this case.

10

Figure 2.3

K-fold Cross-ValidaƟon k Equals Four Sketch

11

CHAPTER III

RELATED WORK

 Chapter 3 explores works that have already been conducted that hold similar ground to

image detecƟon with deep learning. The following subsecƟons discuss soluƟons and results of

other lightweight machine learning algorithms.

Deep Learning with Solar Panel Damage

 There are already a few approaches to solar panel damage with deep learning [3-

29,40,41]. The authors of [5] used two databases organized by brand, an ambiguous damaged,

and a good dataset for classifiers. One of these datasets was ten "mock" residenƟal images,

while the other dataset was 60,000 images. They used a MaƩhews CorrelaƟon Coefficient

(MCC) to determine the accuracy and ran two experiments. First was a pre-trained approach

using a CNN, where they had a 94.7% MCC accuracy. AŌer this, they started retraining the CNN

to achieve an approximate accuracy of 100% using the training data. The authors of [6] looked

at damage to solar panels using EL images. They focused on intact panels, cracked, had intra-cell

damage, solder issues, and oxygen bubbles. Their dataset consisted of 19,228 EL images

comprised of 640x512 pixels. Then, the results of ResNet models (ResNet18,50,152) and a YOLO

model were compared. The authors of [6] achieved an F1 score of 0.83 on ResNet18 and a 0.78

F1 score on YOLO. For the final model, ResNet was chosen based on this score. The authors of

12

[7] used MobileNetV1 to achieve an accuracy of 88.29% when classifying 45,469 augmented

images with the following classes: clean, dust, cement, bird droppings, cracks, snow, soil, and

shadows. Before augmentaƟon, they had a total of 4,110 images. The authors of [27,29]

reference issues in gathering images of damaged PVs as there is not much public data available,

and both used image augmentaƟon to generate results. The authors of [27] collected a total of

350 images and augmented them to create a total of approximately 60,000 images. Using

TensorFlow and homemade code Ɵtled SolarDiagnosƟcs, they classified shaded, dust, snow, and

good PVs with an accuracy of 85.9%. Others, like [28], point out that a wide array of camera and

noncamera opƟons are needed as condiƟons can result in areas where one opƟon cannot be

used. They used EL and IR images to detect microcracks, dirt, hotspots, and bird droppings with

an accuracy of 99.8%. This was achieved using Kera's deep convoluƟonal network, Visual

Geometry Group 16 (VGG16). The authors of [13] used 44 EL images augmented up to 2,624

images. The two classes used were good and defecƟve. Using a VGG6-based CNN, the authors

of [13] created their model using cross-validaƟon with a fold size of four. This resulted in an

average accuracy of 93.025%. The authors of [18] tested two different CNN's, a YOLOV4 and a

ResNet, for model creaƟon. These models were trained on IR images. They used a dataset of

3,582 augmented 640x512 pixel images to determine if a panel had hit a segmentaƟon

threshold or had a hotspot. The YOLOv4 achieved an average accuracy of 99.01%, while the

ResNet model achieved an accuracy of 99.23%. The authors of [34] specifically use infrared to

idenƟfy cells with hot spots or areas with higher temperatures than other solar panel areas. In

contrast, the authors of [7,10,24] use a mix of tradiƟonal imagery and infrared images to classify

not only PV's. The dataset [24] used comprised 1,136 images before augmentaƟon; each of

13

these images was converted down to 336x256 pixels and to greyscale before training on the

data. Ten classes were used: discoloraƟon, delaminaƟon, corrosion, glass crack, IC failure,

hotspot, cell crack, permanent soiling, good, and back sheet damage. The authors of [24] used

mulƟple different models to train on the data, which resulted in 87.3% accuracy. However, no

loss data was presented. Authors of [15] used Tensorflow and Keras to build their CNNs and

tracked the accuracy with different model opƟmizers. With 600 IR images, the authors of [15]

achieved accuracies of up to 98.93% with SGD and 94.52% with Adam on the IR images to

detect damage; they also claim that the model with the Adam opƟmizer could get close to 100%

at detecƟng hotspots. While the exact number of each image class was not idenƟfied, they had

the following categories: normal, dirt, vegetaƟon, hot spot, mulƟ-hot spot, open circuit, cell

crack, and DC box component. The authors of [24] had classifiers of clean, dust, cement,

shadow, bird droppings, crack, snow, and soil. Shadow-covered PVs have a total of 56 images,

the largest image class consisƟng of 1,204 images of dusty PVs, and a dataset comprised of

4,110 images in total. AŌer this, they used image augmentaƟon to generate a dataset of 45,469

images and achieved 94% accuracy with their proposed model. The authors of [25] had a

dataset of 1,100 images and three classes: normal, damaged, and dusty, achieving an accuracy

of 93.7% using an SGD opƟmizer. The image sizes and normalizaƟon process were not provided.

Deep Learning on Edge Devices and Microcontrollers

Deep learning on edge devices has seen a lot of aƩenƟon in the last seven years. High-

performance model training is sƟll mainly done on state-of-the-art computers due to resource

consumpƟon [42]. However, the opƟon of implemenƟng and using trained models on much less

14

resource-intensive devices, such as microcontrollers and mobile devices [43] or even small GPUs

[42], is quite incenƟvizing. Deep learning on edge devices has seen large swaths of use cases,

from UAVs to many other applicaƟons. The authors of [22] designed a small CNN model using

Tensorflow-Lite and Keras to develop a real-Ɵme fault detecƟon system for PVs. The authors of

[22] focused on five class labels: healthy, dirty, degraded, sand deposit, and overheated juncƟon

box. They had 670 IR images that were augmented up to 5,786 images. The smallest image

count was "Overhead JuncƟon Box" at 90 images. This was augmented up to 877 images. At the

same Ɵme, the largest image pool of 150 dirty images was augmented to 1,425 images. Running

their model on the Arduino Nano 33 BLE Sense, [22] achieved an accuracy of 94.8%. The

authors of [44] have an edge device (Raspberry Pi 4) that can discover anomalies that could be

malicious traffic on a network. The authors of [45] detail the challenges of developing edge

cases to train the model on the device instead of using a state-of-the-art computer, which may

be useful for updaƟng the model on the fly. There are also methods to update and train a model

through over-the-air updates [26,45].

Deep Learning with Unmanned Aerial Vehicles

There are various applicaƟons for using Machine Learning devices while flying UAVs

(more commonly known as drones). This ranges from using sƟll images to real-Ɵme image

detecƟon to MulƟlabel object detecƟon [4-25,46,47,48]. There are also more precise

applicaƟons like counƟng corn [40] or even determining cars via segmentaƟon techniques. In

the case of PV analysis, the way these images are typically handled is a UAV will take pictures of

an area, then in some ways are transferred to a computer for classificaƟon [4-20]. For instance,

15

the authors of [8] used Bluetooth to transfer the images from a UAV to their CPU. The authors

of [20-23, 25, 46] have been able to do classificaƟon on an embedded system that is mounted

on a UAV. The authors of [11] used a K-means classifier on a dataset of 4,969 RGB images and

4,143 IR images taken from UAVs. The authors of [11] focused on whether there was a faulty

panel or if a panel was good, with an accuracy of 96.1%. The authors of [12] used UAVs to take

and transfer images over 4G. They had a dataset of 6 kinds of images: 100 encapsulant

delaminated, 100 encapsulant delaminated, 100 broken glass, 500 dust, 200 snail trail covered,

and 2,000 good images. Their model achieved an accuracy of 78.61%. The authors of [14] used a

dataset of 500 IR images, 63 of which had hotspots, 15 of which had bypass defects, and the

remainder of which were good. These images were taken at 640x512 pixels and were used to

form two classes, good and defecƟve. Achieving a 98.47% with just a binary classifier. The

authors of [17] used a VGG16 CNN to detect if bird droppings were on PVs. About 1,000 640-by-

480 pixel images were taken by UAVs to train this data. The authors of [17] did not break down

how many images were good and how many had bird droppings. The calculaƟons of a

percentage of PVs had bird droppings from the zones the images were taken from. The number

of images per zone was not given. The authors of [19] look into using YOLOV3 as its CNN

classifier and apply it to two different datasets to see if they can get comparable results. The

first dataset consisted of 2,038 640x512 pixel IR images that looked to classify heated joints and

hotspots in PVs, while the second dataset consisted of 1,500 1,600x1,200 images. The second

dataset focused on soiling, strong soiling, raised panels, delaminaƟon, puddles, and bird

droppings. This dataset had a breakdown of 428 strong soiling images, 475 raised panels, 525

delaminated panels, 1060 soiling, 3403 puddles, and 4095 bird-dropping images. For both these

16

datasets, image augmentaƟon was applied, though the number of images is not stated. In their

first dataset, an accuracy of 66.9% is achieved, while 68.5% is achieved with their second

dataset. The authors of [20] compared the performance of three different models designed on

the YOLOv3 classifier on different hardware targets. The use case used a UAV equipped with

onboard hardware to label the antenna, insulators, and vibraƟon dampeners of power systems

in real-Ɵme. They focused on which device and opƟmized model would produce the most

efficient real-Ɵme data. They measured how many frames their hardware could process per

second. In the end, the authors of [20] determined the YOLOv3 opƟmized model on the Nvidia

Jetson AGX Xavier resulted in the best accuracy while processing fiŌy 288x288 pixel images per

second. The authors of [21] conƟnue to follow the real-Ɵme approach using IR cameras to

detect cell, module, or panel faults. One-hundred and sixty-two images were used to train a

YOLOv3 model on a Nvidia Jetson TX2. A breakdown of 54 images shows the model and 36-

panel faults, and the rest show the device operaƟng normally. Using these three classes, the

model achieved an overall accuracy of 95%. The authors of [23] were another IR-focused PV

expansion method that had 12 classes: cell damaged, mulƟ-cell damage, crackling, diode

damage, mulƟ-diode damage, hotspot, mulƟ-hotspot, offline module, shadowing, spoiling,

vegetaƟon, and good. The authors of [23] reference that most models up to the point of wriƟng

had a dataset of a range from 110 to 900 IR images, so they acquired 20,000 IR image data sets.

This dataset had a wide range of images for each given type, as there were only 175 images for

the mulƟ-diode damage, while single-cell damage had 1,877 images. Data augmentaƟon was

used to increase the number of images, but the amount of this is not explained in the

document. However, the authors menƟon that the images are normalized to 40x24 pixels

17

before training. They also noted that for future models, it would be wise to augment some

images to solve for imbalanced classes of the model. The final model ended with an accuracy of

85.4%. The author of [46] used a real-Ɵme system using MobilenetV1 to determine if concrete

had been damaged to significant effect, having an approximate 95% accuracy on damage

detecƟon, which has some very similar methods to what happens further in this paper.

Summary of Literature

 Overall, most of these documents cover a porƟon of the work carried out in this thesis.

Table 3.1 compares what some of these documents cover versus this thesis. This thesis achieves

a power-efficient mulƟ-image, damage classificaƟon model that is on board a UAV.

18

Table 3.1 Literature Comparison

Ref No K-Fold

/Cross

Validated

Model

MulƟ

Image

Type

Single Model Onboard

ClassificaƟon

MulƟple

Device

Comparison

Power

Usage

(flight

Ɵme)

[27,13] X X

[15] X X X

[28,7,11,12,19,24] X X

[5, 6, 9, 14, 17, 18,

29]

 X

[20] x x x

[21-23] X X

[24] x

[10] X X

[25] x x

Thesis X X X X x X

19

CHAPTER IV

METHODOLOGY

Model ImplementaƟon

Dataset

 For this work, a mix of provided and internet-found images (using keywords broken,

cracked, microcracked, hotspot, dusty, solar panel, and PV) were used. The original dataset had

no qualifiers when gathering data. For instance, one of the internet-gathered datasets of

images was a set of "good" and "dusty" PV's from the image data set repository Kaggle [49,50].

Another dataset [49] contained a total of 2,562 images, 1,493 of which were deemed "clean"

while the other 1,069 were considered "dusty," though dusty appears to cover bird droppings

and other debris, not just dust. In contrast, the dataset provided by [50] contained 199 bird-

dropping, 202 clean, 220 dusty, 98 electrical damaged, and 66 physically damaged PV Images.

Both datasets contained images from a wide array of different angles. Since a UAV will not

always have a consistent image angle on PVs, it was thought that additional angles could help

the model recognize panels. However, the PV data from these datasets had a few perceived

abnormalities, such as people in photos, ads built into the photos, markings depicting the

damage, and watermarked images. Figure 4.1 depicts a few of these removed outliers. A model

was created with these abnormalities included and removed, with results shown in Table 5.2.

Different angles and aerial views were left since these would most likely be present from drone

20

images. Other online images provided "microcrack" panels (which were captured with UV

Cameras), "hot spot" panels, and "broken glass" panels. Figure 4.2 shows an example of each

image category, and Table 4.1 shows the number of images after abnormalities were removed

and before augmentation.

21

Figure 4.1

Outliers Removed from Dataset

Table 4.1 Number of Each Image Type

Good Dusty Hotspot Broken Glass Microcracked

1000 950 94 94 10

22

Figure 4.2

Collection of Sample Images

23

The number of dataset images for the different types of damage varied. Thus, augmentation of

the image data pool was done to expand them. This augmenter code brought the image pool

for each datatype to 3,000 images. The augmenter code was created with the Augmenter

Python package and works as follows:

 Take an image from the base pool.

 Based on a probability, do at least one of the following: flip the image horizontally, flip

the image vertically, rotate the image a maximum of five degrees left or by a maximum

of ten degrees right, skew the image in one of twelve directions (Figure 4.3), and/or

zoom into the image by a minimum factor of 1.1X zoom or a maximum factor of 1.5X

zoom.

 Save the image into a new folder to be used for model training.

 Repeat the process until the desired sample size is reached.

A dataset of about 500 was initially used to speed up the process of original prototyping. These

data types were split in a 70:15:15 ratio for training, validation, and test datasets.

24

Figure 4.3

Skewed Image Example

Preprocessing

There was a wide array of image resolutions and sizes on which the model was to be

trained. The largest size being 5,472 x 3,080 pixels and the smallest size being 389 by 258 pixels.

To reduce model size and provide uniformity, all images were preprocessed. First, all images were

resized to a 224 x 224-pixel square. Distortion of the images was not factored in. After this, each

image was normalized on a scale from negative one to one. Figure 4.4 shows a normalized

image's basic input and output to the human eye.

25

Figure 4.4

NormalizaƟon of an Image

Neural Network ConstrucƟon – TensorFlow

The initial model was built upon TensorFlow version 2.8 code base using Keras. Keras

was used with TensorFlow since its primary purpose is to focus on debugging speed, code

elegance, conciseness, maintainability, and deplorability [56]. It is a useful interface with

TensorFlow and has many tool sets, allowing users to design different CNN models easily. For

the classification model, CNN MobileNetV2 is used. The Keras code base was used to implement

the MobileNetV2 normalization in the model. Since image classification methods are the target

use case, a two-dimensional convolutional layer (Conv2D) was used. The final model consists of

the following: an Input Layer, sixteen Block layers, a Dense layer, and an Output layer. Each of

the sixteen block layers is then broken up into subsections, which do various processes to help

the model determine classification and then pass the data to the next sublayer. Figure 4.5 and

Figure 4.6 show what one block of data can look like for a given image. This heatmap is a bit of

code that allows humans to visualize what features the model visualizes. There are five distinct

26

categories; thus, categorical labeling was used. The model will operate while using SoftMax

activation.

Figure 4.5

Image to be Modeled

27

Figure 4.6

Block One Heatmap

The Adam opƟmizer was used to create the model, and categorical cross entropy was used as

the objecƟve funcƟon.

28

TensorFlow Model TesƟng

 A set of programs were used to create and test the model, as shown in Figure 4.7.

Figure 4.7

Program Flow for Model CreaƟon and TesƟng

The general model creaƟon and training process started with a low epoch number of five and a

smaller image dataset (500 images). This was to prototype a model quickly and to start working

on a good set of programs that could interface with the resulƟng model. As stated earlier, the

image data was proporƟoned into three categories: 70% for training, 15% for validaƟon, and

15% for tesƟng. The model training code uses the training and validaƟon data sets to create and

train the model. AŌer one complete pass of the training dataset (an epoch), the model is

validated using the validaƟon dataset. The model is updated based on the validaƟon results,

and another epoch is run using the updated weight values to improve model classificaƟon

accuracy. For the prototyping, this process of adjusƟng epochs and training the model

29

conƟnued unƟl an accuracy of at least 80% was achieved. AŌer prototyping, the goal was to

achieve an accuracy within the range of 90% and 95%. The model is stored for subsequent

tesƟng once an accuracy between 90% and 95% is achieved. The model was tested using the

remaining test image data set and the SKlearn python library. The SKlearn library allowed the

model to collect new data and get the accuracy, precision, recall, and F1 scores based on a

supplied grand truth table. The output of this can be seen in Figure 4.8.

TensorFlow-Lite

After the TensorFlow model had been set up and had an acceptable accuracy of above

80%, this model was then converted into a TensorFlow Lite applicable model. TensorFlow Lite is

the mobile library for deploying models on mobile devices, microcontrollers, and other edge

devices [43]. This was done since TensorFlow Lite is better optimized for less powerful

hardware and to save on file space. Like the testing process for the TensorFlow model, both

programs achieved the desired accuracy value(s) and used the SKlearn Python library and a

ground truth table to calculate the numbers presented in Figure 4.8. There was no apparent hit

to the models, accuracy, precision, or recall values at the cost of converting to a Tensor Flow

Lite model.

30

Figure 4.8

TensorFlow vs TensorFlow Lite

Hardware Targets

The model building and original testing happened on a Windows Personal Computer. The

code was then transitioned to a Raspberry Pi 4 and Nvidia Jetson Nano for further testing and

experiment implementation. Each hardware requires different dependencies, and software

version builds are needed to get this working. The setup for the two devices is explained further

in Chapter VI. Both devices were chosen for their ease of access and ability to scale down the

actionability of smaller hardware use. The two devices also provided a platform to compare a

system that will do machine learning completely on its CPU (Raspberry Pi 4) and one that will

offload some work onto its GPU (Nvidia Jetson Nano).

31

Raspberry Pi 4

The main implementation of the model was managed via the Raspberry Pi 4. The Pi 4 is

built around the 64-bit Broadcom BCM2711BO quad-core A72 with 4GB LPDDR4 SD RAM [52].

Additional peripherals were a Raspberry Pi Camera Module 3 for the camera and a Samsung 128

Evo Plus Memory card for memory storage. Figure 3.9 shows this configuration.

Figure 4.9

Raspberry Pi 4 Dev Unit

Nvidia Jetson Nano

The Jetson Nano is built around an ARM Cortex A57 MPCore processor and NVIDI's

Maxwell architecture with 128 CUDA Cores. This system also has 4 GB of 64-bit LPDDR4 RAM

[53]. Additional peripherals were a SanDisk Extreme Pro 256GB SD card and a Raspberry Pi

Camera Module 2. The Pi Camera Module 3 could not be used at the time of writing because it

was not supported. Figure 4.10 shows the layout of the dev kit. NVIDIA develops CUDA, a parallel

32

computing platform and programming model designed for general computing on GPUs [54].

Nanocam was the most readily available camera codebase for the Jetson Nano. It was used to

control and take pictures.

Figure 4.10

Jetson Nano Dev Kit

Since TensorFlow-Lite and TensorFlow both have CUDA processing support, there could be

potential advantages it could bring compared to the Raspberry Pi. Implementing CUDA support

was a simple addition since the codebase easily checks if it can be used, so implementation was

straightforward. Both bits of hardware allowed for effective ways to start down-scaling hardware

33

and implementing the model. It is worth noting that while the original software target for the

hardware was TensorFlow 2.15 (which is supported on the Raspberry Pi), the latest version of

TensorFlow that works with the Jetson Nano is 2.7 at the time of writing. A drop to TensorFlow

2.6 was required to have everything operational. Other software dependencies had to use

different version numbers to become operational. Appendix B shows the general installation and

setup process for the dev kit.

Model ImplementaƟon on Hardware

 Once a satisfactory model (80% accuracy or better) was created, it was applied to the two

target hardware platforms. A program was designed to read all images from a file folder (this

came from the data split and is the test data), classify the images, and place each image into the

model's correct folder. Each of these folders represents one of the five classes of PV types and

contains organized images. To help with future model training, it would note and then store a

copy in another folder. The code determines the closeness of two probabilities by looking at the

two highest probable classifications. After this, it subtracts the lowest of the two options from

the highest. If this remainder is under 58%, the code determines the model was close to picking

one of two classifications. Since there were two likely classification candidates, whether the

image was chosen correctly or not, it is important to earmark this image as it could have value in

future iterations of training the model. Upon further review, these images could be added back

into the next model training session, allowing for a more robust model.

Model Improvement and AddiƟonal EvaluaƟon

34

 Once hardware was tested and results were gathered, k-fold cross-validaƟon was applied

to the model. This was done to beƩer, unbiasedly understand how the model was being

implemented. Based on the results of k-fold cross-validaƟon, addiƟonal changes to model

training and image dataset choices were made. These were as follows:

 Reduce the image pool for each category to the same number of images (94) before

augmentaƟon.

o A random number generated selected these images to reduce the chance of

human bias.

 Try different numbers of augmented samples.

 Look at the effect of adding and removing different categories of images.

 Use a low number of epochs for rapid prototyping.

All of these were done to help remove bias and improve the model.

35

CHAPTER V

RESULTS

Model TesƟng and CreaƟon

 Each model is created with a five-class classification using categorical cross-entropy loss,

a batch size of 32, and the Adam optimizer with a learning rate of 0.001. The initial model was

created based on only five epochs, yielding a decent accuracy rating of 87.29%. The model ended

up with 154 MobileNetV2 layers. A generalization of these layers is shown in Table 5.1.

36

Table 5.1 Model Block Layer Breakdown

Layer Description

Input Layer The base layer takes in the input

Convolution layer Takes an input, does batch normalization, and then a ReLU

activation passes to the next block.

Blocks 1 through 16

(bottleneck layers)

Filters out nodes from the previous layer to obtain a

representation of the input with reduced dimensionality.

[37,38]

Convolutional Layer Takes an input, does batch normalization, and then a ReLU

activation passes to the next block.

Global average pooling 2d Structural regularizer to help prevent overfitting for the overall

structure of the model. [65]

Drop out layer Removes nodes from the NN to help reduce overfitting.

Dense layer Layer that receives output from every neuron from the

previous layer. Calculates the dot product of the input and the

neuron weights.

37

During the training process, it was realized that the good and dusty databases had images with

the same watermarks. There was worry that the model could perceive these watermarks as

important features, adding an unwanted bias. The database was handpicked to fix this, and all

watermarked images were removed. The model was then recreated, this time without

watermarks. There was roughly a 2.2% accuracy increase and a 2.5% F1 score increase from

removing all the watermarked images. With the proof of concept finished, a final pass was done.

This last pass created the final model using the same classification and optimization methods,

but this time with a validation accuracy process of one hundred epochs. This tightened the

accuracy to 92.89% and the F1 score to 92.92%. (Table 5.2).

Table 5.2 Comparison of Model Tests based on Epoch and Watermark Removal

Epochs Accuracy Precision Recall F1 Score

Five w/ Watermarks 87.29 88.21 87.28 86.86

5 w/o Watermarks 89.51 89.86 89.51 89.37

100 w/o Watermarks 92.89 93.29 92.89 92.92

200 w/o Watermarks 92.31 92.67 92.31 92.36

AŌer creaƟng a model of acceptable accuracy (aiming around 90%), the TensorFlow model was

converted into a TensorFlow Lite model. The model dropped from 12.2 MB to 8.47 MB in size.

38

Analysis of Model ImplementaƟon on Hardware

 The program designed for analysis reads all images from a file folder and places them into

what the model deemed the correct folder. If an image had two areas close in tolerance, it would

note and store a copy in another folder. This process worked because the code would take the

two highest probable categories and subtract the most probable from the second most probable.

If this number was less than 0.58, the two probabilities were close enough that the image might

not be sorted correctly. For instance, Figure 5.1 – Dusty Solar Panel Deemed Good had a

probability difference of 0.087693125, meaning the image might not be sorted correctly. The

model claimed a probability of 4.5615301e-01 for being a dusty solar panel and a probability of

5.4384613e-01 for being a good solar panel.

39

Figure 5.1

Dusty Solar Panel Deemed Good

While the image limit on the PC was not hit, the original image run of 2,250 images was beyond

the limit for the target hardware. Thus, the image count was lowered to 1,576 for large-scale

image testing as this number could still be allocated into one array in memory for the Raspberry

Pi and Jetson Nano. Figure 5.2 shows a block diagram of how the code functions.

40

Figure 5.2

Block Diagram of Predict_N_Sort.py

Each run had the same images and was sorted into categories for each run. The code running on

the Raspberry Pi with the Raspbian OS took the longest average processing time, 260.40 seconds

(about 4.34 minutes) or 6.05 images per second. The Raspberry Pi running Bookworm processed

and classified the images in approximately 129.1 seconds or 12.2 images per second, a substantial

increase. The Jetson Nano processed these images at an average of roughly 195.9 seconds or

8.04 images per second. These times and values are the average calculated across ten runs,

covering image selection, preprocessing, normalization, and classification (Table 5.3). The

Raspberry Pi completes all these tasks in roughly 66.78103 seconds, faster than the Jetson Nano.

41

Table 5.3 Predict_N_Sort.py Time Trials

 Pi 4–- Raspbian Pi 4–- Bookworm Nano

Se
co

nd
s

(s
) p

er
 ru

n

253.4199 129.2129 200.5513

250.4071 129.0781 198.8279

251.1060 129.0683 196.7776

247.9717 128.9392 194.4261

246.3445 129.1950 192.7811

276.718708 129.2045 193.2558

274.5008 128.9511 194.9502

274.6640 129.3329 194.6129

252.4989 128.9323 193.5942

276.3599 129.0188 198.9661

Average Time 260.3992 129.0933 195.8743

While the time trials were running, a power meter tracked the power draw, and the

maximum power used during the prediction was recorded, as shown in Table 5.4. This worst-case

scenario facilitates determining how much power would be drawn in the field if large amounts

of images were processed simultaneously.

42

Table 5.4 Max Power Usage While Predicting

Run Pi 4–- Raspbian

(Watts)

Pi 4 – Bookworm

(Watts)

Nano

(Watts)

1 6.1 6.8 6.3

2 5.7 6.8 6.6

3 5.7 6.6 6.6

4 5.7 6.7 6.7

5 5.8 6.7 6.8

6 5.7 6.7 6.8

7 5.8 6.5 6.5

8 5.8 6.8 6.7

9 5.8 6.8 6.7

10 5.9 6.8 6.5

Average 5.8 6.72 6.62

The power draw between the Bookworm OS and the Nano was 0.1 watts. The Raspberry

Pi running the Raspbian OS used slightly less power overall. However, it did have to run for much

longer.

43

A total of fifty-five images were flagged as close. Out of these fifty-five images, twenty of

them were mislabeled. Only 107 images were labeled incorrectly. This means the test dataset

had a failure rate of approximately 6.79%. Out of these images, the majority of the mislabeled

were either in the Good or Dusty categories. Sixty-nine good images were labeled Dusty, while

28 "Dusty" panels were labeled "Good." Table 5.5 shows a full breakdown of mislabeled images.

Table 5.5 Breakdown of Mislabeled Images

 Labeled

Incorrectly
Labeled

Broken Glass Dusty Good Hot Spots Microcracks

Broken Glass 0 3 0 0 0

Dusty 0 0 28 1 0

Good 0 69 0 0 0

Hot Spot 0 5 1 0 0

Microcracks 0 0 0 0 0

Camera Tests

 With Camera testing, the "Predict_N_Sort.py" Python program was modified to take a

picture at 224 x 224 pixels resolution. If it is not the correct resolution, it will resize and normalize

it. After that, it will use the TensorFlow Lite model and place that image into a folder based on

the model's decision. Figure 5.3 shows the block diagram of how this code functions.

44

Figure 5.3

Programming Block Diagram for capImg_Predic_N_Sort.py

Ten pictures were taken, and the time it took to complete this process was recorded, which is

presented in Table 5.6.

45

Table 5.6 Picture and Sort Time Trials

Image Capture Raspberry Pi 4 -
Raspbian

Time (s)

Raspberry Pi 4 -
Bookwork

Time (s)

Jetson Nano Time (s)

1 0.3095 0.1929 0.5710

2 0.2948 0.1943 0.3926

3 0.2913 0.2330 0.3725

4 0.3035 0.1922 0.4443

5 0.3113 0.1967 0.4418

6 0.3110 0.1368 0.4358

7 0.2987 0.1891 0.4362

8 0.3134 0.1948 0.4373

9 0.3011 0.1381 0.3857

10 0.2940 0.1821 0.3373

Average 0.3029 0.1850

0.4255

The average Ɵme on the Raspberry Pi with Raspbian was roughly 0.303 seconds, which, if a

human is in the loop taking pictures of solar panels, should give the system enough Ɵme to

process and sort before the next image comes in. This is surprising, given how poorly it

predicted a large swath of images. It even beat the Nano, which had an average of 0.425

seconds. However, the Raspberry Pi running with Bookworm and picam2 beat both with an

average of 0.185 seconds. Like before, the maximum power usage was recorded during the

program's run-Ɵme, as shown in Table 5.7. The Nano power draw is slightly less than the

Raspberry Pi, beaƟng it by an average of .14 WaƩs. It is worth noƟng that the power savings are

offset by the addiƟonal code runƟme on this device.

46

Table 5.7 Max Power Usage Single Image Capture and Inference

Run Pi 4–- Raspbian

(Watts)

Pi 4 – Bookworm

(Watts)

Nano

(Watts)

1 5.5 5.1 4.6

2 5.6 5.1 4.7

3 5.7 5.1 4.8

4 6.0 5.2 5.2

5 5.4 5.1 5.2

6 5.9 5.1 5.2

7 5.4 5.2 4.7

8 5.8 5.1 4.7

9 5.7 5.2 5.2

10 5.8 5.2 5.2

Average 5.68 5.14 4.95

47

Flight Times

 The average power usage of the camera tests was lower than predicted. Power usage

will impact flight Ɵme the least by keeping the run Ɵme short. This is because less waƩage is

used over a smaller amount of Ɵme, and less drain will be done on the baƩery. Table 5.8 shows

an esƟmated flight Ɵme based on the addiƟonal power draw of our two devices while running

at different throƩle seƫngs. In this table, the power usage of the code was calculated based on

the code running for 1 minute straight, using the equaƟon milliamp hours per minute/ max

baƩery capacity.

Table 5.8 EsƟmated Flight Times

ThroƩle

usage

Flight

Time -

base (Min)

FT –

Raspberry Pi

4 Idle

FT – Jetson

Nano Idle

FT –

Raspberry Pi 4

Image capture

FT – Jetson

Nano Image

Capture

100% 8.9286

8.8256

8.8974

6.8496

7.9143

65% 21.7391

21.1384 21.5553 12.5010 16.5691

50% 38.4615

36.6204 37.8900 16.6684 24.7811

 It is worth noƟng that this esƟmate does not include the impact of addiƟonal weight on the

UAV, so the esƟmate is not 100% accurate. However, these calculaƟons were based on the four

propellers datasheet [55] used by the 3DR X8+. However, from the esƟmates, the Raspberry Pi

48

will affect the flight Ɵme more than the Nano. However, this addiƟonal power draw allows for

the ability to take five images and classify them over a minute compared to the Nano, which can

only do two images in the same amount of Ɵme.

K-fold ValidaƟon and Model Adjustments

 The other tests for model inference on devices and power consumpƟon have great

results. The model was then put through a k-fold cross-validaƟon of k=10. Figure 5.4 shows the

results of the 100 epoch model. The average score for all ten folds was just 26.67% accuracy,

much lower than the original 92.89%.

Figure 5.4

Ten Fold Cross-ValidaƟon of the model

The resulƟng averages show an average validaƟon loss of 2.17 and an average validaƟon

accuracy of 26.6% for the model. The first thing that was done was a review of the dataset.

Upon review, there were less than four good microcracked images. There were so few

microcracked images in general that the category was removed, and the model was rebuilt and

tested again. The accuracy increased to 30.12% in this case, and the loss dropped to 1.64. The

49

accuracy improvement makes sense since there is one less category. The worst-case scenario is

a one-in-four chance of predicƟng versus the one-in-five chance of the original model. The loss

rate drop shows that the microcracked images affected the model training. The next course of

acƟon was to equalize the image pool in the four-image type dataset. There were ample dusty

and good PV images, while there were only ten images for each category. AŌer searching for

more images, the image count for hotspots and broken glass was increased to 94 images each.

Since these images were close-up, aerial PV images, like those shown in Figure 5.5, were

removed to remove the bias of addiƟonal features. For instance, a potenƟal bias that could be

perceived is the roadway shown in Figure 5.5. While the image contains solar panels, if enough

roadways are added to the dataset, the model could potenƟally start to learn them as a

potenƟal feature.

50

Figure 5.5

Example of Aerial Images Removed

AŌer removing aerial images, a random number generator was used to pull 94 images for the

good and dusty categories. For quick prototyping, the k-fold value was reduced to four from ten,

and a total of ten epochs were used. The model was trained using k-fold validaƟon on just the

94 images and an augmented image set comprised of 1,880 images. The original 3,000 images

were compared to the original model for the final four categories. To understand how the

model is learning from the classes provided, only two classes were trained. AŌer the 94-image

test was completed, another test with 1,880 images was performed. AŌer this, the broken glass

51

class was added to the training process, training on both 94 and 1,880 images each. AŌer those

tests were completed, the final class of hot spots was added. Table 5.9 shows the average

accuracy results for each test with un-augmented and augmented images, as well as the

accuracy aŌer each class was added back into the model. Tables 5.10, 5.11, and 5.12 present

accuracy results via a confusion matrix for two classes (dusty and good), three classes (broken

glass, dusty, and good), and four classes (broken glass, dusty, good, and hotspots, respecƟvely.

These tables break down the accuracy of each class, the overall accuracy, and a breakdown of

what the model inferred each test image.

52

Table 5.9 K-fold Results

Average ValidaƟon Accuracy (%) ValidaƟon Loss

Dusty/Good @94 images 60.07 0.88

Dusty/Good @1880 images 56.55 0.88

Broken/Dusty/Good @94

images

30.56 1.47

Broken/Dusty/Good @1880

images

35.12 1.35

Broken/Dusty/Good/Hotspot

@94 images

25.30 1.86

Broken/Dusty/Good/Hotspot

@1880 images

28.02 1.53

Broken/Dusty/Good/Hotspot

@3000 images

28.12 1.49

53

Table 5.10 Confusion Matrix: Dusty and Good

94 images 1880 Images
 Dusty Good Accuracy Dusty Good Accuracy
Dusty 35 3 0.921053 Dusty 37 1 0.973684
Good 14 24 0.631579 Good 21 17 0.447368

 0.517544 0.473684

Table 5.11 Confusion Matrix: Broken Glass, Dusty, and Good

94 Images 1880 Images

 Broken
Dust
y

Goo
d Accuracy Broken

Dust
y

Goo
d Accuracy

Broken 29 15 16 0.483333 Broken 22 30 8 0.366667
Dusty 32 13 15 0.216667 Dusty 13 34 13 0.566667
Good 36 17 7 0.116667 Good 7 30 23 0.383333

 0.272222 0.438889

54

Table 5.12 Confusion Matrix: Broken Glass, Dusty, Good, and Hotspots

94 Images

 Broken Dusty Good Hotspot Accuracy
Broken 24 6 20 10 0.4000

Dusty 15 18 18 9 0.3000

Good 11 6 35 8 0.5833
HotSpot 10 15 10 25 0.4167

 0.5667

1880 Images

 Broken Dusty Good Hotspot Accuracy

Broken 36 13 8 3 0.6000

Dusty 8 29 14 9 0.4833
Good 13 17 28 2 0.4667

HotSpot 22 12 14 12 0.2000

 0.5833

3000 Images

 Broken Dusty Good Hotspot Accuracy

Broken 20 14 11 15 0.3333
Dusty 14 34 6 6 0.5667

Good 15 17 27 1 0.4500
HotSpot 3 25 12 20 0.3333

 0.5611

The average loss decreased except for the dusty and good PV categories (Table 5.9). For

example, broken glass, dusty, and good dropped 1.47% to 1.35%, and the average accuracy

went up from 30.56% to 35.12%, which is expected. As more data is used to train the model,

the model learns a more accurate representaƟon of the feature distribuƟons used to separate

one class from another. Overall, the model's loss improved, which is a good indicator that over-

fiƫng is not occurring. However, with such a finite number of images, the data was augmented

55

to 2,000% for 1,880 and up to 3,191% for 3,000 images. There is concern that augmenƟng the

base dataset by such a large percentage is biasing the model. Table 5.12 shows there is an

actual trend of dropping accuracy when the model is trained on 3,000 augmented images

compared to 1,880 augmented images. The original model had a loss rate of 2.17 and an

accuracy of 26.6%, with the original five-class dataset of ten images for the broken glass,

hotspot, and microcracked classes. Removing the microcracked images resulted in a loss of 1.64

and an accuracy of 30.12%. The model's accuracy drops when the number of images per class is

kept the same. Data augmentaƟon may create a bias that results in higher accuracy. For a less

biased model, it is suggested that the number of images per class be the same and the

augmentaƟon of the dataset be limited. A beƩer approach would be to collect and add

addiƟonal images to each class. These images could include any test images labeled "close"

from previous tests, but further research is needed to ensure the model is not overfiƫng. One

of the opƟons to help ensure overfiƫng is not occurring is just to get more images. However,

since that can be an issue, lowering the number of MobileNet layers and simplifying the model

is one opƟon to help prevent overfiƫng with smaller datasets. The 154 MobileNet layers may

be too deep of a CNN for the model to learn properly. Another opƟon could be expanding the

number of classes, adding classes like bird droppings, vegetaƟon growth, etc. This could give the

model more data and potenƟal new features to help differenƟate the current classes.

56

CHAPTER VI

FUTURE WORK

There are still concerns about how small the image pool is for each class within the

dataset before augmentation. One possible approach to dealing with this concern is the selection

of a classifier that works better with smaller datasets. This is in addition to updating the model

with more images as they are captured by onboard cameras or discovered through additional

searches. Continuously updating the model will allow for a better, more robust inference system.

An investigation into image distortion, resulting from resizing images to 224-by-224 pixel images,

impacts on model performance. The current device choice running our model can classify images

correctly while having a minor impact on flight time. This model can be used to classify and report

damage to PVs. Given that the end goal is to deploy and integrate this model on a UAV, an

additional hardware choice could still be made. Smaller edge devices could still be explored as

the weight of the current hardware choices on top of the potential weight of any other

instrumentation could cause an additional impact on flight time. TensorFlow Lite allows even

smaller edge devices to use less power and weight. A device like Espressif's ESP32-S3-EYE or a

similar edge device could be considered if power and weight are issues with the original hardware

targets. However, switching the software codebase from Python to C++ could be difficult on some

edge devices like the Espressif. A choice of whether to use the UAV's camera or an additional

57

mounted camera to acquire images still needs to be made. If using the UAV's onboard camera, a

process to interface and use these images still needs to be created. After the camera interface is

developed and integrated into the UAV, an image Geo-tagging process will need to be made,

integrated, and tested.

58

CHAPTER VII

CONCLUSION

This study demonstrated that a MobileNetV2 ConvoluƟon Neural Network classificaƟon

model for Solar Panel health could be determined in real-Ɵme. This model can classify four

types of panel issues and determine if a panel has no issues, all while having a short inference

Ɵme. Currently, the latest OS on the Raspberry Pi is the best opƟon. The Pi, using this small 5-

class classificaƟon model and program, can take, normalize, and process a new image in roughly

0.185 seconds. This allowed the next steps to puƫng this on a UAV, taking real-world photos,

and processing on the fly. Using a TensorFlow Lite model also allows scaling down for other

lightweight, low-power systems that could further extend the product's baƩery life. Meanwhile,

the 92.89% accuracy of the originally tested model appears to be misleading based on the k-fold

validaƟon results. Future dataset tuning and more image data should allow for a more robust

model. The next step should be to start overlaying GPS data on images. The GPS data will be

processed to allow the user to quickly locate a given panel aŌer idenƟfying a damaged panel.

Overall, the proposed method will enable users to find and diagnose solar panel issues rapidly,

thus allowing quicker troubleshooƟng and repair.

59

REFERENCES

[1] Lawerence Berkely National Laboratory, et al. "Utility-Scale Solar, 2023 Edition Empirical

Trends in Deployment, Technology, Cost, Performance, PPA Pricing, and Value in the United
State" emp.lbl.gov, Oct. 2023,
emp.lbl.gov/sites/default/files/utility_scale_solar_2023_edition_slides.pdf. Accessed 1 Nov.
2023.

[2] E. Cook, S. Luo, and Y. Weng, "Solar Panel Identification Via Deep Semi-Supervised Learning
and Deep One-Class Classification," in IEEE Transactions on Power Systems, vol. 37, no. 4,
pp. 2516-2526, July 2022, doi: 10.1109/TPWRS.2021.3125613.

[3] Majdi, Abdulrhman, et al. "Fundamental study related to the development of modular solar
panel for improved durability and repairability." IET Renewable Power Generation 15.7
(2021): 1382-1396.

[4] Wolfgang Muehleisen a, et al. "Outdoor Detection and Visualization of Hailstorm Damages of
Photovoltaic Plants." Renewable Energy, Pergamon, 8 Nov. 2017,
www.sciencedirect.com/science/article/pii/S0960148117311114?casa_token=UV9Rkt50PrY
AAAAA%3AdTybnJtjTvVaGNXBo_eR_CRPt_zKgDWJNI3O4Rlql1aLleNFXe4YjmC2FCbm3c0NrG
POgJNnFwaw.

[5] Li, Qi, et al. "Automatic damage detection on rooftop solar photovoltaic arrays." Proceedings
of the 7th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and
Transportation, 18 Nov. 2020, https://doi.org/10.1145/3408308.3431130.

[6] Chen, Xin, et al. "Automated defect identification in electroluminescence images of solar
modules." Solar Energy, vol. 242, Aug. 2022, pp. 20–29,
https://doi.org/10.1016/j.solener.2022.06.031.

[7] Dwivedi, Divyanshi, et al. "Identification of surface defects on solar PV panels and wind
turbine blades using attention based deep learning model." Engineering Applications of
Artificial Intelligence, vol. 131, May 2024, p. 107836,
https://doi.org/10.1016/j.engappai.2023.107836.

[8] Padmavathi, N., and A. Chilambuchelvan. "Fault detection and identification of solar panels
using Bluetooth." 2017 International Conference on Energy, Communication, Data Analytics
and Soft Computing (ICECDS), Aug. 2017, https://doi.org/10.1109/icecds.2017.8390096.

[9] Segovia Ramírez, Isaac, et al. "Fault detection and diagnosis in photovoltaic panels by
radiometric sensors embedded in unmanned aerial vehicles." Progress in Photovoltaics:
Research and Applications, vol. 30, no. 3, 3 Oct. 2021, pp. 240–256,
https://doi.org/10.1002/pip.3479.

60

[10] Zefri, Yahya, et al. "Thermal infrared and visual inspection of photovoltaic installations by UAV
photogrammetry—application case: Morocco." Drones, vol. 2, no. 4, 23 Nov. 2018, p. 41,
https://doi.org/10.3390/drones2040041.

[11] Zhao , Raymond. "Photovoltaic (PV) Solar Panel Identification and Fault Detection Using
Unmanned Aerial Vehicles (UAVs): A Case Study of a 0.5 MW PV System ." Yale University,
2022.

[12] Li, Xiaoxia, et al. "Intelligent fault pattern recognition of aerial photovoltaic module images
based on deep learning technique." J. Syst. Cybern. Inf 16 (2018): 67-71.

[13] Akram, M. Waqar, et al. "CNN based automatic detection of photovoltaic cell defects in
electroluminescence images." Energy, vol. 189, Dec. 2019, p. 116319,
https://doi.org/10.1016/j.energy.2019.116319.

[14] Fernández, Alberto, et al. "Robust detection, classification and localization of defects in large
photovoltaic plants based on unmanned aerial vehicles and infrared thermography." Applied
Sciences, vol. 10, no. 17, 27 Aug. 2020, p. 5948, https://doi.org/10.3390/app10175948.

[15] Jeffrey Kuo, Chung-Feng, et al. "Automatic detection, classification and localization of defects
in large photovoltaic plants using unmanned aerial vehicles (UAV) based infrared (IR) and RGB
imaging." Energy Conversion and Management, vol. 276, Jan. 2023, p. 116495,
https://doi.org/10.1016/j.enconman.2022.116495.

[16] Kirsten Vidal de Oliveira, Aline, et al. "Aerial infrared thermography for low-cost and fast fault
detection in utility-scale PV power plants." Solar Energy, vol. 211, Nov. 2020, pp. 712–724,
https://doi.org/10.1016/j.solener.2020.09.066.

[17] Moradi Sizkouhi, Amirmohammad, et al. "A deep convolutional encoder-decoder
architecture for autonomous fault detection of PV plants using multi-copters." Solar Energy,
vol. 223, July 2021, pp. 217–228, https://doi.org/10.1016/j.solener.2021.05.029.

[18] Ruan, Chenjie, et al. "Deep learning-based method for PV panels segmentation and defects
detection with infrared images." 2021 China Automation Congress (CAC), 22 Oct. 2021,
https://doi.org/10.1109/cac53003.2021.9728350.

[19] Di Tommaso, Antonio, et al. "A multi-stage model based on yolov3 for defect detection in PV
panels based on IR and visible imaging by Unmanned Aerial Vehicle." Renewable Energy, vol.
193, June 2022, pp. 941–962, https://doi.org/10.1016/j.renene.2022.04.046.

[20] Ayoub, Naeem, and Peter Schneider-Kamp. "Real-time onboard detection of components and
faults in an autonomous UAV system for power line inspection." Proceedings of the 1st
International Conference on Deep Learning Theory and Applications, 2020,
https://doi.org/10.5220/0009826700680075.

[21] KAYCI, Barış, et al. “İHA Tarafından Elde Edilen termal görüntüler kullanılarak fotovoltaik
sistemde derin öğrenme Tabanlı Arıza Tespiti ve Teşhisi.” Journal of Polytechnic, 10 June 2022,
https://doi.org/10.2339/politeknik.1094586.

[22] Ksira, Zakaria, et al. "A novel embedded system for real-time fault diagnosis of photovoltaic
modules." IEEE Journal of Photovoltaics, vol. 14, no. 2, Mar. 2024, pp. 354–362,
https://doi.org/10.1109/jphotov.2024.3359462.

61

[23] Le, Minhhuy, et al. "Thermal inspection of photovoltaic modules with deep convolutional
neural networks on edge devices in AUV." Measurement, vol. 218, Aug. 2023, p. 113135,
https://doi.org/10.1016/j.measurement.2023.113135.

[24] Shihavuddin, ASM, et al. "Image based surface damage detection of renewable energy
installations using a unified deep learning approach." Energy Reports, vol. 7, Nov. 2021, pp.
4566–4576, https://doi.org/10.1016/j.egyr.2021.07.045.

[25] Özer, Tolga, and Ömer Türkmen. "An approach based on deep learning methods to detect
the condition of solar panels in solar power plants." Computers and Electrical Engineering,
vol. 116, May 2024, p. 109143, https://doi.org/10.1016/j.compeleceng.2024.109143.

[26] T. J. O'Shea, T. Roy, and T. C. Clancy, "Over-the-Air Deep Learning Based Radio Signal
Classification," in IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp. 168-
179, Feb. 2018, doi: 10.1109/JSTSP.2018.2797022. keywords: {Modulation;Feature
extraction;Wireless communication;Neural networks;Machine learning;Fading
channels;Decision trees;Cognitive radio;deep learning;modulation;neural networks;pattern
recognition;sensor systems and applications;wireless communication},

[27] Li, Qi, Keyang Yu, and Dong Chen. "SolarDiagnostics: Automatic damage detection on
rooftop solar photovoltaic arrays." Sustainable Computing: Informatics and Systems 32
(2021): 100595.

[28] Meribout, Mahmoud, et al. "Solar panel inspection techniques and
prospects." Measurement (2023): 112466.

[29] Lydia, MD Dafny, K. Sri Sindhu, and K. Gugan. "Analysis on solar panel crack detection using
optimization techniques." Journal of Nano-and Electronic Physics 9.2 (2017): 2004-1.

[30] Cardinale-Villalobos, Leonardo, Renato Rimolo-Donadio, and Carlos Meza. "Solar panel
failure detection by infrared UAS digital photogrammetry: a case study." Int. J. Renew.
Energy Res. (IJRER) 10.3 (2020): 1154-1164.

[31] S. Voghoei, N. Hashemi Tonekaboni, J. G. Wallace and H. R. Arabnia, "Deep Learning at the
Edge," 2018 International Conference on Computational Science and Computational
Intelligence (CSCI), Las Vegas, NV, USA, 2018, pp. 895-901, doi:
10.1109/CSCI46756.2018.00177. Keywords: {Computational modeling; Quantization (signal);
Deep learning; Internet of Things; Edge computing; Performance evaluation; Image edge
detection; Edge Computing, Internet of Things (IoT), Deep Learning (DL), Deep Neural
Networks (DNN)},

[32] Müller, Andreas C., and Sarah Guido. Introduction to Machine Learning with Python: A Guide
for Data Scientists. O'Reilly Media, 2018.

[33] C.Gambella, B.Ghaddar, and J.Naoum-Sawaya, "Optimization problems for machine learning:
A survey," European Journal of Operational Research, vol. 290, no. 3, pp. 807–828, 2021.
[Online].Available: [1901.05331] Optimization Problems for Machine Learning: A Survey
(arxiv.org)

[34] Rawat, Waseem, and Zenghui Wang. "Deep convolutional neural networks for image
classification: A comprehensive review." Neural Computation 29.9 (2017): 2352-2449.

62

[35] Kapoor, Amita, et al. Deep Learning with TensorFlow and Keras: Build and Deploy Supervised,
Unsupervised, Deep, and Reinforcement Learning Models. Packt Publishing, 2022.

[36] J. Brownlee, "Gentle introduction to the Adam optimization algorithm for deep learning,"
MachineLearningMastery.com, https://machinelearningmastery.com/adam-optimization-
algorithm-for-deep-learning/ (accessed Dec. 20, 2023).

[37] Sharma, Nitika. “What Is Mobilenetv2? Features, Architecture, Application and More."
Analytics Vidhya, 29 Dec. 2023, www.analyticsvidhya.com/blog/2023/12/what-is-
mobilenetv2/#:~:text=The%20use%20of%20MobileNetV2%20for%20image%20classificatio
n%20offers,compared%20to%20larger%20and%20more%20computationally%20expensive
%20models.

[38] Howard, Andrew G., et al. "MobileNets: Efficient Convolutional Neural Networks for Mobile
Vision Applications." arXiv.Org, 17 Apr. 2017, arxiv.org/abs/1704.04861.

[39] Andriana, Shehani. "The Most Common Types of Solar Panel Defects." Engineering, 23 Nov.
2023, engineerinc.io/the-most-common-types-of-solar-panel-
defects/#:~:text=The%20Most%20Common%20Types%20of%20Solar%20Panel%20Defects,
4%20Electrical%20Problems%20...%205%20Manufacturing%20Defects%20.

[40] B. T. Kitano, C. C. T. Mendes, A. R. Geus, H. C. Oliveira and J. R. Souza, "Corn Plant Counting
Using Deep Learning and UAV Images," in IEEE Geoscience and Remote Sensing Letters, doi:
10.1109/LGRS.2019.2930549. keywords: {Agriculture;Computer architecture;Unmanned
aerial vehicles;Training;Image segmentation;Deep learning;Cameras;Deep learning
(DL);plant counting;precision agriculture.}

[41] Ammour, Nassim, et al. "Deep learning approach for car detection in UAV imagery." Remote
Sensing 9.4 (2017): 312.

[42] Qu, Zhongnan. "Enabling Deep Learning on Edge Devices." arXiv.Org, 6 Oct. 2022,
arxiv.org/abs/2210.03204.

[43] "Tensorflow Lite: ML for Mobile and Edge Devices." TensorFlow, www.tensorflow.org/lite.
Accessed Dec. 2023.

[44] Hunter, Jona than, "Deep learning-based anomaly detection for edge-layer devices"
(2022). Masters Theses and Doctoral Dissertations.
https://scholar.utc.edu/theses/740

[45] Chen and X. Ran, "Deep Learning With Edge Computing: A Review," in Proceedings of the
IEEE, vol. 107, no. 8, pp. 1655-1674, Aug. 2019, doi: 10.1109/JPROC.2019.2921977.
keywords: {Deep learning;Edge computing;Cloud computing;Computational
modeling;Training;Servers;Neural networks;Computer vision;Machine learning;Artificial
intelligence;Artificial intelligence;edge computing;machine learning;mobile
computing;neural networks},

[46] Qurishee, Murad Al, "Low-cost deep learning UAV and Raspberry Pi solution to real-time
pavement condition assessment" (2019). Master Theses and Doctoral Dissertations.
https://scholar.utc.edu/theses/601

63

[47] A. Zeggada, F. Melgani, and Y. Bazi, "A Deep Learning Approach to UAV Image
Multilabeling," in IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 5, pp. 694-698,
May 2017, doi: 10.1109/LGRS.2017.2671922. keywords: {Unmanned aerial
vehicles;Training;Neural networks;Feature extraction;Histograms;Image
segmentation;Computer architecture;Convolutional neural networks (CNNs);image
multilabel;Otsu’s algorithm;unmanned aerial vehicles (UAVs);urban monitoring},

[48] Mittal, Payal, Raman Singh, and Akashdeep Sharma. "Deep learning-based object detection
in low-altitude UAV datasets: A survey." Image and Vision Computing 104 (2020): 104046.

[49] "Solar Panel Dust Detection." Kaggle, 20 Nov. 2022,
www.kaggle.com/datasets/hemanthsai7/solar-panel-dust-detection.

[50] AFROZ (2024). "Solar Panel Clean and Faulty Images." 2024, from
https://www.kaggle.com/datasets/pythonafroz/solar-panel-clean-and-faulty-images.

[51] Sandler, Mark. "MobileNetV2: Inverted Residuals and Linear Bottlenecks." arXiv.org, 13 Jan.
2018, arxiv.org/abs/1801.04381.

[52] "Raspberry Pi 4 Specs and Benchmarks — the MagPi Magazine." The MagPi Magazine,
magpi.raspberrypi.com/articles/raspberry-pi-4-specs-benchmarks.

[53] "NVIDIA Jetson Nano." NVIDIA Developer, developer.nvidia.com/embedded/jetson-nano.
[54] "Cuda Zone - Library of Resources." NVIDIA Developer, developer.nvidia.com/cuda-zone.

Accessed 16 Feb. 2024.
[55] "Sunnysky V2216 Multirotor Brushless Motors." SunnySky USA,

sunnyskyusa.com/products/sunnysky-v2216-motors. Accessed 17 Mar. 2024.
[56] Team, Keras. "Simple. Flexible. Powerful." Keras, keras.io/. Accessed 11 Dec. 2023.

[57] S. Kim, S. Chon, J. -K. Kim, J. Kim, Y. Gil and S. Jung, "Lightweight Convolutional Neural
Network for Real-Time Arrhythmia Classification on Low-Power Wearable
Electrocardiograph," 2022 44th Annual International Conference of the IEEE Engineering in
Medicine & Biology Society (EMBC), Glasgow, Scotland, United Kingdom, 2022, pp. 1915-
1918, doi: 10.1109/EMBC48229.2022.9871156.

[58] E. Arnaudo et al., "A Comparative Evaluation of Deep Learning Techniques for Photovoltaic
Panel Detection From Aerial Images," in IEEE Access, vol. 11, pp. 47579-47594, 2023, doi:
10.1109/ACCESS.2023.3275435.

[59] Piazza, Maria Carmela di, et al. "Identification of photovoltaic array model parameters by
robust linear regression methods." Renewable energy & power quality journal 1 (2009):
143-149.

[60] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, "Densely connected Convolutional
Networks," arXiv.org, https://arxiv.org/abs/1608.06993

[61] Li, En, Zhi Zhou, and Xu Chen. "Edge intelligence: On-demand deep learning model co-
inference with device-edge synergy." Proceedings of the 2018 Workshop on Mobile Edge
Communications. 2018.

64

[62] Chen, Jiasi, and Xukan Ran. "Deep learning with edge computing: A review." Proceedings of
the IEEE 107.8 (2019): 1655-1674.

[63] Warden, Pete, and Daniel Situnayake. TinyML: Machine Learning with Tensorflow Lite on
Arduino and Ultra-Low-Power Microcontrollers. O'Reilly, 2020.

[64] Brownlee, J. (2023). "A Gentle Introduction to k-fold Cross-Validation." 2024, from
https://machinelearningmastery.com/k-fold-cross-validation/.

[65] Lin, M., et al. (2013). "Network in network." arXiv preprint arXiv:1312.4400.

65

APPENDIX A

SETUP RASPBERRY PI 4

66

Before the Raspberry Pi is hooked up, either download the Raspberry Pi Imager soŌware

or be prepared to install it over the ethernet via SSH. This example will be using the 64-bit

Raspberry Pi OS. Select RASPBERRY PI OS (64-bit) FULL (the current version as of wriƟng is

Bookworm). Launch Raspberry Pi Imager and select RASPBERRYPI 4 for the device and

RASPBERRY PI OS (64-BIT) for the OperaƟng system. Also, select the locaƟon of the SD CARD.

See Figure A.1 SD Card Set up – Raspberry Pi Imager.

Figure A.1

SD Card Set up – Raspberry Pi Imager

67

When asked to customize OS seƫngs, select EDIT SETTINGS and update the following: Set the

username to pi and a password that can be remembered. See Figure A.2—Raspberry Pi OS

CustomizaƟon Seƫngs.

Figure A.2

Raspberry Pi OS CustomizaƟon Seƫngs

ConƟnue with the installaƟon process. Once the SD card is imaged, insert it into the Raspberry

Pi 4 and turn it on. Log in and open the terminal to run the following commands: sudo apt

update && sudo apt upgrade -y. This will make sure that the device is fully up to date. Install the

68

dev environment in the terminal with the Sudo apt-get install code. Once installed, launch

Visual Studio Code by typing the code in the terminal and hiƫng enter. Click the extensions

buƩon, type in Python, and click install for the Python extension. See Figure A.3 – Visual Studio

Code Python Extension Install on Raspberry Pi 4. Once the code is installed, install the Python

extension to debug or edit the codebase.

Figure A.3

Visual Studio Code Python Extension Install

On Raspberry Pi 4

While the extension installs the rest of the code dependencies, go back to the terminal and run

Sudo rm /usr/lib/python3.XX/EXTERNALLY-MANAGED (replace xx with python version number;

69

currently it is 11.) and Sudo pip3 install numpy matplotlib scikit-learn augmentor split-folders

pyyaml opencv-python tensorflow keras keyboard picamera2. See Figure A.4 – Installing

Dependencies on Raspberry Pi 4.

Figure A.4
Installing Dependencies on Raspberry Pi 4

Once all the dependencies are installed, copy the AI_Image_Solar Folder from

AI_Image_Solar_pi_Bookworm to /home/pi. Return to Visual Studio Code, go to the explorer

70

tab, and open the AI_Image_Solar Folder by clicking open folder, selecting the AI_Image_Solar

folder, and clicking open. Figure A.5 – Raspberry Pi Visual Studio Developer Environment Set up.

Figure A.5

Raspberry Pi Visual Studio Developer Environment Set Up

With the dev environment fully loaded, go to codes Predict_N_Sort.py and click the run python

file to verify everything is working correctly in Visual Studio code. There should be some files in

the unsorted folder for it to sort through. Once it's complete, there should see some of the Sort

71

Folders now have five new folders, correlating to the five-panel types, and that all the images

from the unsorted file are moved into them. To test if the camera is operational, we will need

to run the Python code as root. Running either image_capture_picam2.py,

capIMG_Predict_N_Sort.py, or capIMG_Predict_N_Sort_instant.py as root. By using sudo

python <pythonfilename.py>. To do this, open or reuse the existing instance of the terminal,

use commands cd /AI_Image_Solar/codes, and then sudo python capIMG_Predict_N_Sort.py.

See Figure A.6 Demonstration of capIMG_Predict_N_Sort.py. There will be a command asking

to press p to take a picture or e to exit the code.

72

Figure A.6

Demonstration of capIMG_Predict_N_Sort.py

The image will be shown sorted into a folder. The process of setting up the Raspberry Pi 4 is

finished.

73

APPENDIX B

SETUP JETSON NANO

74

The Jetson Nano is a GPU-focused device with quite a few more steps to set up

compared to the Raspberry Pi. Three bits of soŌware are needed to set up the Nano. First, an

SD Card FormaƩer can be found at

hƩps://www.sdcard.org/downloads/formaƩer_4/eula_windows/. The latest version of Jetpack

(4.6.3 at the Ɵme of wriƟng) is hƩps://developer.nvidia.com/jetson-nano-sd-card-image, and

Etcher, the imaging soŌware is located at hƩps://www.balena.io/etcher.

Launch the SD Card formaƫng soŌware shown in Figure B.1. Select the hard drive (drive E:/ in

the example). Select "quick format," then leave the volume label secƟon blank. Click format.

Figure B.1

75

SD Card Formaƫng

Unzip the downloaded image folder for the Jetson Nano SDK from wherever it has been

downloaded. Then launch Etcher. Click "Select image" and go to the extracted images folder.

Select "sd-blob-b01.img. Then click "Select Target," selecƟng the formaƩed SD card. Then click

"Flash". See Figure B.2 for what this should look like.

Figure B.2

Balena Etcher Setup

76

Once finished flashing the device, take the SD card out and plug it into the Jetson Nano. Power

on the Nano; a prompt will appear with the first-Ɵme setup informaƟon. Accept the terms of

Nvidia's licenses and the other system configuraƟons like language and English keyboard. For

the username, we used g and set a password; for the APP, the parƟƟon size is set to the

maximum megabytes. For Nvpmodel mode select MAXN. This should begin the system

configuraƟon process. As menƟoned earlier, the Nano is a bit trickier to set up than the

Raspberry Pi, so we have a few more commands to execute. Once logged in, run sudo apt

update && sudo apt full-upgrade. Figure B.3 – Full System Update – Linux

Figure B.3

77

Full system Update - Linux

A prompt will ask if you want to conƟnue typing y and hiƫng enter. During the update, a

prompt asking to update nvidia-tegra.conf and nv-oem-config-post. Select Y. Another propt will

also ask to restart the Docker daemon. Select Yes. Once done, run reboot, go back into the

terminal, and run sudo apt install --fix-broken -o Dpkg::OpƟons::="--force-overwrite". Then, type

reboot. Once rebooted, we will begin installing the dependencies. To install the dependinces,

we have a few lines of code we will need to type up. Run the following lines of code in this exact

order, as the dependency manager on the Nano does not appear to be as robust as the

Raspberry Pi's. Thus, if programs are not installed in the right order, things may not work as

intended. Run the following lines of code:

sudo apt-get install git cmake

sudo apt-get install python3-dev

sudo apt-get install python3-pip

python3 -m pip install --upgrade pip

pip3 install -U pip testresources setuptools

sudo apt-get install libfreetype6-dev python3-setuptools libatlas-base-dev libhdf5-serial-dev

hdf5-tools libhdf5-dev gfortran libc-ares-dev libeigen3-dev zlib1g-dev zip libjpeg8-dev liblapack-

dev libblas-dev libfreetype6-dev protobuf-compiler libprotobuf-dev openssl libssl-dev libcurl4-

openssl-dev

78

pip3 install -U numpy==1.19.3 future==0.18.2 mock==3.0.5 gast==0.4.0 protobuf pybind11

pkgconfig packaging

AŌer running these lines of commands, type reboot.

Now that most of the dependencies are installed. Begin downloading TensorFlow and Keras

onto the Jetson Nano by opening up a terminal and running the following commands:

Sudo ln -s /usr/include/locale.h /usr/include/xlocale.h

pip3 install --verbose 'protobuf<4' 'Cython<3'

pip3 install --extra-index-url hƩps://developer.download.nvidia.com/compute/redist/jp/v46

tensorflow==2.6.2+nv21.12

pip3 install keras==2.6

During the installaƟon of Tensorflow 2.6.2, there will be a long wait for a wheel of numpy

version 1.12 to be built. This is shown in Figure B.4 – Numpy Wheel. Trust the process, and it

will eventually get done.

79

Figure B.4

Numpy Wheel

AŌer Tensorflow and Keras are installed, we will conƟnue to download a few more

dependencies for the code base by running the following commands:

pip3 install matplotlib augmentor split-folders pyyaml keyboard scikit-learn

sudo pip install scipy==1.5.4

sudo apt-get install nano

sudo apt-get install dphys-swapfile

pip3 install nanocamera

80

reboot

AŌer these are installed, the final two dependencies can be installed: a OpenCV version

allowing us to use Nvidia's CUDA cores. First, build OpenCV code provided by QEngineering.eu.

This secƟon will cover the steps to install this code; otherwise, for more informaƟon, please go

to their website and read more about it.

Run the command sudo nano /sbin/dphys-swapfile. This will open the physical swapfile locaƟon

and scroll down to the CONF_MAXSWAP variable. Change its value to 4096. Figure B.5 –

sbin/dphys-swapfile edit shows what this should look like. Hit "CTRL+X" to save and exit the file.

Figure B.5

sbin/dphys-swapfile edit

81

We now also need to edit the /etc/dphys-swapfile seƫngs as well. Run the command sudo nano

/etc/dphys-swapfile.

Find and uncomment (remove the #) in the file and add 4096 to the variable, as shown in Figure

B.6 – etc/dphys-swapfile edit. Just like before, hit "Ctrl+x" to exit and save the file.

Figure B.6

etc/dphys-swapfile edit

AŌer saving the etc/dphys-swapfile file, run the reboot command. Once rebooted, reopen the

terminal and run the command free -m. The output of which should match Figure B.7 – Correct

Memory Management.

82

Figure B.7

Correct Memory Management

Next, we will run the commands to start installing the custom OpenCV install for the Jetson

Nano. A word of warning: this, at a minimum, will take three and a half hours. In some cases, it

takes up to twelve hours to build and install. Run the following commands in the terminal:

wget hƩps://github.com/Qengineering/Install-OpenCV-Jetson-Nano/raw/main/OpenCV-4-9-

0.sh

sudo chmod 755 ./OpenCV-4-9-0.sh

./OpenCV-4-9-0.sh

83

Once the codebase has been built successfully, a screen similar to that in Figure B.8 will appear.

Enter the root password and let it finish installing.

Figure B.8

OpenCV Successfully Built

AŌer OpenCV has been successfully installed. Run the following commands:

rm OpenCV-4-9-0.sh

sudo /etc/init.d/dphys-swapfile stop

sudo apt-get remove --purge dphys-swapfile

sudo rm -rf ~/opencv

sudo rm -rf ~/opencv_contrib

84

reboot

There is a bit more of a process to get the development environment installed and working. This

is since Visual Studio Code is not naƟvely supported on the Nano. To install, run the following

commands:

git clone hƩps://github.com/JetsonHacksNano/installVSCode.git

cd installVSCode

nano instalVSCodeWithPython.sh./installVSCodeWithPython.sh

Since, at the Ɵme of wriƟng, the latest version of Visual Studio Code did not work, we needed to

set the .sh file to install a known good version, which is currently 1.80.0. Figure B.9 - Visual

Studio Code Setup shows what this should look like. AŌer adding in 1.80.0, hit "Ctrl + x" and

save the file. Then run the command ./installVSCodeWithPython.sh. AŌer this, Visual Studio can

be run by typing code into the terminal.

85

Figure B.9

Visual Studio Code Setup

86

Once all the Visual Studio code and the dependencies are installed, copy the AI_Image_Solar Folder from

AI_Image_Solar_pi_Jetson_Nano to /home/. Return to Visual Studio Code, Go to the explorer tab, and

open the AI_Image_Solar Folder by clicking the open folder, selecƟng the AI_Image_Solar folder, and

clicking open. Run Predict_N_Sort.py to verify the code base is working. We should see the unsorted

folder is now empty, and the test images are sorted into the correct categories.

87

VITA

 Garrick Daniel Muncie was born in Detroit, MI. He is the first of two children. He

aƩended the Academy of InformaƟon Technology at Apex High School in Apex, North Carolina.

AŌer graduaƟon, he aƩended Tennessee Technological University, where he became interested

in Computer Engineering. He completed the Bachelor of Science degree in December 2016 in

Computer Engineering with a minor in MathemaƟcs. Garrick is conƟnuing his educaƟon in

engineering by pursuing a master's degree at the University of Tennessee ChaƩanooga.

