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ABSTRACT 

 

 

Enhancing the control of prosthetic hands is a crucial challenge that directly impacts 

the daily functionality of individuals with limb loss. Our research delves into advanced 

machine learning (ML) methodologies to accurately predict hand-grasping orientations, 

thereby improving the precision of prosthetic control. We present a comprehensive framework 

that amalgamates inputs from multiple sensors. This includes electroencephalography (EEG) 

to discern user intentions, electromyography (EMG) to evaluate muscle activity, and inertial 

measurement units (IMU) to track features of hand movement. By harmoniously integrating 

these varied data streams, our ML model strives to provide predictions of hand orientation that 

are more accurate and intuitive than those achievable with single-sensor systems. This 

innovative approach has the potential to significantly elevate prosthetic functionality and user 

experience, enabling more precise and effortless execution of grasping tasks. Integrating these 

sensors within a singular, cohesive ML framework allows for the dynamic assessment of 

various physical and neurological cues. This methodological synergy enhances the prosthetic’s 

adaptability to each user’s unique movement patterns and neural commands. Applying deep 

learning techniques, particularly through a combination of ML models, we proposed a new 

model called AutoMerNet. This model further enhances our system’s ability to learn from 

complex, multi-modal sensor data, continually improving its predictive capabilities over time. 

This research contributes to the technological advancement of prosthetic hands and 

opens avenues for personalized prosthetic adjustments based on individual physiological and 

biomechanical characteristics. The enhanced control provided by our ML model holds promise 

for significantly improving the quality of life for prosthetic users, facilitating more natural and 

effective interaction with their environment. 

 

 



v 

 

 

 

 

 

 

DEDICATION 

I wholeheartedly dedicate this research to the cherished memory of my two late 

maternal uncles, whose enduring inspiration and support have profoundly shaped my journey. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

 

 

 

 

 

ACKNOWLEDGMENTS 

I express my deepest gratitude to my esteemed advisor, Dr. Erkan Kaplanuglu, whose 

invaluable guidance, unwavering support, and insightful feedback have been pivotal 

throughout this project. This achievement would not have been possible without his invaluable 

insights and steadfast encouragement. 

I extend my heartfelt thanks to Dr. Ahad Nasab, Dean of the College of Engineering at 

the University of Tennessee at Chattanooga, for his unwavering support and encouragement. 

His visionary leadership and commitment to fostering an enriching research environment have 

significantly contributed to my academic and professional development. 

Additionally, I am profoundly grateful to my distinguished committee members, Dr. Yu 

Liang and Dr. Gokhan Erdemir, for their exceptional guidance and support.  

I am also deeply thankful to my spouse, Amin, for his unwavering support and 

understanding, which have been a constant source of strength and motivation throughout this 

journey. Furthermore, I am immensely grateful to my parents for their endless love, 

encouragement, and belief in my abilities, which have been the foundation of all my 

accomplishments. 

 

 

 

 

 

 

 

 

 

 



vii 

 

 

 

 

 

 

TABLE OF CONTENTS 

 
 

ABSTRACT .............................................................................................................................. iv 

 

DEDICATION ........................................................................................................................... v 

 

ACKNOWLEDGMENTS ........................................................................................................ vi 

 

LIST OF TABLES ..................................................................................................................... x 

 

LIST OF FIGURES .................................................................................................................. xi 

 

LIST OF SYMBOLS .............................................................................................................. xiii 

 

LIST OF ABBREVIATIONS ................................................................................................. xiv 

 

CHAPTER 

 

1 INTRODUCTION ................................................................................................................. 1 

 

1.1 Using Biological Signals for Prosthetic Hand Control ................................................ 2 
1.2 The Impact of AI and ML Techniques on Prosthetic Hand Control ............................. 2 
1.3 Limitations and Challenges in Prosthetic Hand Control .............................................. 4 
1.4 Potential Solutions for Prosthetic Hand Control Challenges ....................................... 5 
1.5 Importance of Predicting Hand Grasping Orientation ................................................... 6 
1.6 Research Objective and Proposed Approach ................................................................ 7 
1.7 Dissertation Structure ................................................................................................... 8 

 

2 CONTROLLING PROSTHETIC HANDS: BACKGROUND .......................................... 10 

 

2.1 Introduction ................................................................................................................ 10 
2.2 Early Days: Mechanical Marvels (Pre-1900s) ........................................................... 10 
2.3 Harnessing Electricity (1900s) ................................................................................... 12 
2.4 EMG Takes Center Stage (Mid-20th Century) ........................................................... 12 
2.5 Modern Advancements (Late 20th Century - Present) ............................................... 12 
2.6 The Future: Brain-Computer Interfaces (Present - Ongoing) .................................... 13 
2.7 Summary .................................................................................................................... 14 

 

3 CONTROLLING THE ASSISTIVE DEVICES WITH BIOLOGICAL SIGNALS ........... 17 

3.1 Introduction ................................................................................................................ 17 
3.2 Controlling the Prosthetics Hands with Biological Signals ....................................... 18 

3.2.1 Electrical Language of the Body ....................................................................... 18 
3.2.2 Characteristics of EMG Signals ........................................................................ 18 



 

viii 

 

3.2.3 The Birth of Myoelectric Control ...................................................................... 19 
3.2.4 The Power of Pattern Recognition .................................................................... 20 
3.2.5 Benefits of EMG Signals ................................................................................... 20 
3.2.6 Challenges and Limitations of EMGs in Controlling Prosthetics ..................... 21 

3.3 Electroencephalogram (EEG) for Prosthetic Control ................................................. 21 
3.3.1 The Motor Cortex and Movement Control ........................................................ 21 
3.3.2 Structural Dynamics and Characteristics of EEG ............................................. 22 
3.3.3 Advantages of EEG in Prosthetic Control ......................................................... 24 
3.3.4 Challenges and Limitations of EEG in Controlling Prosthetics Hand .............. 24 
3.3.5 Combining EEG and EMG for Enhanced Prosthetic Control ........................... 25 

3.4 Inertial Measurement Units (IMUs) for Prosthetic Control ....................................... 26 
3.4.1 Characteristics and Components of IMUs ......................................................... 26 
3.4.2 The Role of IMU Signals in Controlling Prosthetic Hands............................... 27 
3.4.3 Combining IMUs, EEG, and EMG for Advanced Prosthetics Control ............. 28 

 

4 DATA COLLECTION, EXPERIMENT, AND TOOLS...................................................... 30 

 

4.1 Introduction ................................................................................................................ 30 
4.1.1 EEG Insights ...................................................................................................... 30 
4.1.2 EMG Insights .................................................................................................... 31 
4.1.3 IMU Insights ...................................................................................................... 32 
4.1.4 Comprehensive Motion Analysis ...................................................................... 32 

4.2 Set Up and Devices .................................................................................................... 33 
4.2.1 OpenBCI for Recording EEG and EMG Data .................................................. 33 
4.2.2 Witmotion Bluetooth IMU Sensors ................................................................... 36 
4.2.3 Custom Graphical User Interface (GUI) ........................................................... 37 
4.2.4 Data Collecting Protocol ................................................................................... 39 

 

5 METHODOLOGY .............................................................................................................. 42 

 

5.1 The Transformative Role of AI and ML in Prosthetic Hand Control ......................... 42 
5.2 Data Collection and Preprocessing ............................................................................. 43 

5.2.1 Data Collection .................................................................................................. 43 
5.2.2 Data Preprocessing ............................................................................................ 43 

5.3 Brief Overview of Basic Machine Learning Methods Used in Proposed Model ....... 44 
5.3.1 Autoencoder Model ........................................................................................... 44 
5.3.2 Transformer Model ............................................................................................ 46 
5.3.3 Artificial Neural Network in Classification ...................................................... 51 

5.4 Proposed Model .......................................................................................................... 55 
5.4.1 Preparing the Data for Feeding Autoencoder .................................................... 61 
5.4.2 Building the Autoencoder Architecture ............................................................. 62 
5.4.3 Training the Autoencoder .................................................................................. 63 
5.4.4 Feature Extraction: Utilizing the Learned Representation ................................ 65 
5.4.5 Advantage of Autoencoder for Feature Extraction of Proposed Model ............ 65 
5.4.6 Transformer for Sequence Modeling ................................................................. 66 
5.4.7 The Artificial Neural Network for Final Classification and Prediction ............ 68 

5.5 Results ........................................................................................................................ 69 
5.5.1 Evaluation Metrics ............................................................................................ 72 

5.6 AutoMerNet's Robustness and High Accuracy .......................................................... 74 



 

ix 

 

5.7 Training and Validation .............................................................................................. 75 

 

6 DISCUSSION: AUTOMERNET AND THE FUTURE OF PROSTHETIC HAND.......... 77 

6.1 Introduction ................................................................................................................ 77 
6.2 Strengths of the Methodology .................................................................................... 77 
6.3 Implications for Prosthetic Technology ...................................................................... 79 
6.4 A Comparison of Machine Learning Approaches for Hand Grasping Prediction ...... 80 

 

7 FUTURE DIRECTIONS AND CONCLUSION ................................................................ 82 

 

7.1 Future Work ................................................................................................................ 82 
7.2 Conclusion .................................................................................................................. 83 

 

REFERENCES ........................................................................................................................ 85 

 

VITA ........................................................................................................................................ 91 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

x 

 

 

 

 

 

 

 

 

LIST OF TABLES 

 

 

2.1  The evolution of prosthetic hands; further details are elaborated in this chapter ........... 16 

 

6.1  Some recent works were compared with AutoMerNet ................................................... 81 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 

 

 

 

 

 

 

LIST OF FIGURES 

 

 

 2.1   The prosthetic hand of German knight Götz von Berlichingen [27] .............................. 11 

 

 2.2   Advanced prosthetic hand (DARPA) ............................................................................. 13 

 

2.3  BCI translates brain signal to control prosthetics hand using ML algorithms ................ 14 

 

3.1  Muscle signals (EMG) from eight parts of muscle during activities .............................. 18 

 

3.2  The motor cortex is located in the frontal lobe of the brain ............................................ 22 

 

3.3  EEG waves with different frequencies ........................................................................... 23 

 

3.4  IMU device is used to record data in three dimensions: X, Y, and Z.............................. 26 

 

4.1  OpenBCI GUI for eight channel setups to record EEG and EMG siganls ..................... 34 

 

4.2  Ultracortex Mark IV EEG headset with EEG recording sensors .................................... 35 

 

4.3  EMG sensors placement for recording muscle signals through OpenBCI setup [63] .... 36 

 

4.4  IMU sensors and EMG sensors placements for recording data ...................................... 37 

 

4.5  Proposed GUI for launching devices simultaneously ..................................................... 38 

 

4.6  Objects used in the biomechatronic lab to generate hand-grasping UTC dataset ........... 40 

 

4.7  Placement of EEG, EMG, and IMU sensors for collecting data from participant ........... 41 

 

5.1 Basic Autoencoder architecture, including encoder and decoder .................................... 45 

 

5.2 The main architecture of the Transformer model ............................................................ 47 

 

5.3 The main architecture of Artificial Neural Network (ANN) ........................................... 52 

 

5.4  Sample of EEG and EMG signals of pinch grasping ....................................................... 55 

 

5.5  Sample of EEG and EMG signals of power grasping...................................................... 56 

 

5.6  Sample of EEG and EMG signal of spherical grasping. .................................................. 56 

 

5.7 Sample of EEG and EMG signals of lateral grasping...................................................... 57 



 

xii 

 

 

5.8   Sample of EEG and EMG signals of cylindrical grasping .............................................. 57 

 

5.9 Sample of EEG and EMG signals of hook grasping........................................................ 58 

 

5.10 Sample of EEG and EMG signals of precision grasping ................................................. 58 

 

5.11  Acceleration, angular velocity, and angle in IMU signals for pinch grasping ................. 59 

 

5.12  Acceleration, angular velocity, and angle in IMU signals for power grasping ............... 60 

 

5.13  Overall view of preprocessing phase and proposed model with their tasks ................... 63 

 

5.14  Confusion matrix of AutoMerNet ................................................................................... 70 

 

5.15  Training loss of AutoMerNet .......................................................................................... 70 

 

5.16  Testing loss of AutoMerNet ............................................................................................ 71 

 

5.17  Test accuracy of AutoMerNet ......................................................................................... 71 

 

5.18 Four evaluation metrics and their values for AutoMerNet .............................................. 73 

 

5.19 AutoMerNet architecture as a combination of Autoencoder, Transformer, and ANN ..... 74 



xiii 

 

 

 

 

 

 

LIST OF SYMBOLS 

 

 

𝑥, Input data 

 

𝑧, Latent representation 

 

𝑓𝑒𝑛𝑐𝑜𝑑𝑒𝑟, Encoding function 

 

𝑔𝑑𝑒𝑐𝑜𝑑𝑒𝑟, Decoding function 

 

𝑥̂, Reconstructed output 

 

L, Loss function 

 

𝑄, Query 

 

K, Key 

 

V, Value 

 

𝑑𝑘, Dimension of keys 

 

P, Position 

 

σ, Activation function 

 

𝑤𝑖, weights 

 

𝑏, Bias 

 

Η, Learning rate 

 

 

 

 

 

 

 

 

 



 

xiv 

 

 

 

 

 

 

 

 

 

 

LIST OF ABBREVIATIONS 

 

 

ML, Machine Learning 

 

EEG, Electroencephalography 

 

EMG, Electromyography 

 

IMU, Inertial Measurement Unit 

 

BCI, Brain Computer Interface 

 

VR, Virtual Reality 

 

AR, Augmented Reality 

 

 

 

 

 



 

1 

 

 

 

 

 

 

CHAPTER 1 

 

1 INTRODUCTION 

 

 

The control of a prosthetic hand is one great stride in advancing assistive technology 

and robotics toward enhancing the quality of life for individuals with limb loss. Integrating 

advanced technologies, especially within the domains of processing biological signals and 

brain-machine interface (BCI), has enabled prosthetic hands to be controlled naturally and 

intuitively [1]. Prosthetic hand technology has come a long way in the past few decades, from 

just a simple mechanical device to a highly sophisticated, sensor-driven system attempting to 

mimic the intricacies of human hand actions. The early prosthetic devices were relatively 

primitive and usually body-powered or controlled by simple myoelectric signals. Although 

these permitted basic grasp functionality, they could not perform tasks that demanded great 

dexterity and responsiveness [2]. 

Recent advances have allowed myoelectric prostheses to be developed, which use 

electrical signals created by muscle contractions in one's residual limb to control the 

movements of the prosthetic hand [3]. Given multiple sensors and microprocessors, such 

devices offer finer control and movement patterns closer to the natural ones. Innovations in 

materials science and miniaturization of electronic components support the functionality and 

aesthetics of prosthetic hands. 

The advent of the BCIs has revolutionized this field of prosthetics by opening a pathway 

of direct communications between the brain and the prosthetic. BCIs decode the neural activity 

and then translate those signals into commands for action, which can control the prosthetic 

hand, hence letting users do tasks in a more accurate and intuitively natural way [4]. It has a 

huge potential, especially for subjects who have lost limbs or have high-level amputations 

where traditional myoelectric controls are poor. In fact, most BCI systems use non-invasive 

techniques through electroencephalography or more invasive methods using implanted 

electrodes to pick up brain activity. Artificial Intelligence (AI) and Machine Learning (ML) 

algorithms are crucial in decoding these neural signals and converting them into actionable 

commands for the prosthetic hand [5]. Integrating BCIs with prosthetic devices is still an 



 

2 

 

emerging field, with ongoing research aimed at improving the accuracy, reliability, and user-

friendliness of these systems. Recent assistive robotics encompasses various technologies 

designed to support individuals with disabilities in performing daily activities. Within this 

domain, prosthetic hands represent a critical area of development. Modern prosthetic hands do 

much more than merely act like a grasp or holding device; rather, they have been made to 

replicate the intricate dexterity which a natural hand encompasses. This includes the ability to 

perform tasks that require fine motor skills, such as typing or handling delicate objects. Using 

AI and ML in assistive robotics has significantly enhanced the adaptability and functionality 

of prosthetic hands [6]. These technologies enable the prosthetic hand to learn and adapt to the 

user's specific needs and preferences, providing a more personalized and effective solution. 

1.1 Using Biological Signals for Prosthetic Hand Control 

The control of prosthetic hands using biological signals involves the interpretation of 

various physiological signals, such as EEG, electromyography (EMG), and inertial 

measurement units (IMU). EMG signals, generated by the electrical activity of muscles, are 

commonly used to control myoelectric prostheses [7]. These signals are captured at the surface 

of the skin by electrodes and then processed to determine what movements the user intends to 

perform. In the context of BCI applications, however, EEG signals are of the most relevance 

since they capture brain activity [8]. In such a case, the use of EEG in the control of prosthetic 

hands offers a more direct and intuitive way of device control for subjects with limited residual 

muscle activity. This is also possible to be completed by including the IMU sensors in the 

prosthetic device, providing useful information on limb orientation or movement, hence 

controlling better feedback about the position and movement of the hand. 

1.2 The Impact of AI and ML Techniques on Prosthetic Hand Control 

AI and ML have revolutionized the concept of prosthetic hand control and driven 

outstanding improvements in functionality, adaptability, and user experience. These 

technologies support the development of intelligent prosthetic devices that learn from and adapt 

to the user in view of their individual needs, thus giving an almost seamless interface between 

the prosthetic hand and the user. 

One of the core challenges in the control of a prosthetic hand lies in the biological 

signals themselves that have to be accurately interpreted, like EMG and EEG [9]. AI and ML 

algorithms excel at processing complex and often noisy signals to meaningful patterns 
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corresponding to the user's intended movements [10]. Advanced ML techniques, such as deep 

learning, allow modeling nonlinear relationships between input signals and the desired output. 

This considerably improves the accuracy and reliability of prosthetic control systems. AI and 

ML make prosthetic hands capable of being tailored to suit particular users through their salient 

features and preferences. Learning from the user's movements and interactions, these systems 

can prioritize output based on natural and intuitive control. This adaptability will, in particular, 

benefit the users under different levels of their muscle activity or when changes occur with 

their residual limb. Individualized ML models permit adjustment in sensitivity and 

responsiveness of the prosthetic hand to have the best performance in various situations. 

Artificial intelligence within prosthetic hands allows for real-time feedback and predictive 

control, enhancing the user experience. It's through current and historical data that AI 

algorithms can infer the intentions of users' actions to provide smoother, more anticipatory 

movements. For example, if it detects that you are about to grasp an object, it could 

preemptively adjust the grasp strength and finger positioning. This predictive capability 

reduces the cognitive load on the user, making the prosthetic hand feel like a natural extension 

of their body. 

AI-driven prosthetic hands execute highly complex tasks involving fine motor activity 

and control. In that situation, the algorithms of ML make possible multi-degree-of-freedom 

movements for a prosthetic hand, including wrist rotation, finger flexure, and execution of part 

of their coordinated actions [11]. This level of dexterity can be required while carrying out 

normal daily activities like typing, cooking, or manipulating small objects. It refines 

movements for greater precision and fluidity over time, due to the continuous learning process 

of the prosthetic hand [11]. These AI and ML techniques also carry out fault detection and 

maintenance of prosthetic hands. By continuously monitoring the device's performance and 

usage pattern, AI systems can detect possible faults or failures and even forecast maintenance 

needs, well before they become critical [12]. The proactive maintenance approach will ensure 

longtime reliability and the life of a prosthetic hand while reducing any downtime and 

improving user confidence. 

AI-powered prosthetic hands can make rehabilitation easier and train new users. The 

ML algorithms adjust device behavior according to users' progress and provide personalized 

support during a user's learning process. Virtual Reality (VR) and Augmented Reality (AR) 

environments with AI enhancements help create different scenarios where the user can exercise 
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and polish his skills safely and controlled [13]. Such training significantly shortens the time 

required for adaptation to the device.  

1.3 Limitations and Challenges in Prosthetic Hand Control 

While the field of prosthetic hand control has made remarkable strides with the 

integration of advanced technologies such as AI and ML, several limitations and challenges 

persist. Addressing these issues is crucial for further advancements and the widespread 

adoption of sophisticated prosthetic solutions. 

One of the primary challenges in prosthetic hand control is the complexity of processing 

biological signals, such as EMG and EEG. These signals are often noisy and vary significantly 

between users and even within the same user over time. Developing robust algorithms that can 

consistently interpret these signals accurately remains a significant hurdle. Additionally, real-

time processing of these signals requires substantial computational resources, which can be 

difficult to integrate into a portable prosthetic device. 

ML models used in prosthetic hand control require extensive training data to perform 

accurately. However, collecting large datasets of high-quality biological signals paired with 

precise movement labels is challenging [14]. The variability in signal quality and movement 

execution among different users further complicates the creation of comprehensive training 

datasets. This limitation can lead to models that perform well in controlled environments but 

struggle in real-world scenarios. 

Integrating advanced AI and ML techniques into existing prosthetic devices can be 

challenging due to hardware and software limitations [14]. Many current prosthetic devices 

may not have the necessary processing power or sensor capabilities to support sophisticated 

ML algorithms. Upgrading or retrofitting these devices to incorporate advanced control 

systems can be costly and complex. Besides, the computational demands of AI and ML 

algorithms, along with the need for continuous signal processing and sensor data acquisition, 

result in high power consumption [15]. Ensuring that prosthetic devices have sufficient battery 

life to function throughout the day without frequent recharging is a significant challenge. 

Developing energy-efficient algorithms and optimizing hardware components for low power 

consumption are essential to addressing this issue. 

Also, using AI and ML in prosthetic hand control raises ethical and privacy concerns, 

particularly regarding the collection and use of biological data [16]. Protecting users' data by 

securely storing and processing it is essential to protect their privacy. Additionally, there are 
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ethical considerations around the potential for AI systems to make decisions that affect users' 

autonomy and safety. Developing transparent, explainable AI models and establishing clear 

guidelines for data usage are critical to addressing these concerns. 

1.4 Potential Solutions for Prosthetic Hand Control Challenges 

Researchers and developers can leverage various technological advancements and 

innovative approaches to overcome the numerous challenges in controlling prosthetic hands.  

Implementing sophisticated AI and ML algorithms, such as deep learning and recurrent neural 

networks (RNNs), can help accurately interpret noisy biological signals like EMG and EEG. 

These models can learn to filter out noise and extract meaningful patterns. Combining data 

from multiple sensors (e.g., EMG, EEG, IMU) can provide a more comprehensive 

understanding of user intentions, improving the accuracy of signal interpretation and control. 

Using techniques like data augmentation and generative adversarial networks (GANs) 

to create synthetic training data can help overcome the scarcity of high-quality datasets [17]. 

This approach can enhance the robustness and generalizability of ML models. Applying 

transfer learning allows models trained on large, diverse datasets to be fine-tuned for specific 

users with limited additional data, reducing the amount of personalized training required. 

Developing adaptive AI systems that continuously learn from the user's interactions can 

personalize the control of the prosthetic hand, making it more intuitive and reducing the 

learning curve [18]. Designing user-friendly interfaces and providing real-time feedback can 

help users adapt quickly. VR and AR training environments can also facilitate user adaptation. 

Creating modular prosthetic devices with interchangeable components can make it 

easier to upgrade existing hardware to support advanced AI and ML algorithms without 

replacing the entire device. Implementing edge computing techniques can enable real-time 

processing on the device itself, reducing the need for powerful external processors and making 

the system more portable [19]. 

Implementing robust encryption and anonymization techniques to ensure the secure 

storage and processing of users' biological data can address privacy concerns. Developing 

explainable AI models that provide clear insights into their decision-making processes can help 

address ethical concerns about autonomy and safety [20]. Establishing clear guidelines and 

regulations for data usage is also essential. 

Utilizing 3D printing and other advanced manufacturing techniques to create 

customizable prosthetic components can ensure a better fit for individual users, addressing the 
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variability in physiological and anatomical characteristics [21]. Developing control systems 

that can be easily adapted and fine-tuned to meet the specific needs and preferences of different 

users can enhance the usability and effectiveness of prosthetic hands. 

1.5  Importance of Predicting Hand Grasping Orientation  

Predicting hand-grasping orientation is a critical aspect of controlling prosthetic hands, 

particularly for individuals who rely on these devices for daily activities. The orientation of the 

hand and fingers must be precisely controlled to successfully grasp and manipulate objects of 

varying shapes, sizes, and textures. Accurate prediction of hand grasping orientation allows 

prosthetic hands to perform tasks that require fine motor skills, such as picking up small 

objects, using tools, or handling delicate items. This capability is crucial for users to perform 

daily activities independently. Correct orientation ensures that tasks are performed more 

efficiently and effectively, reducing the time and effort required [22]. This leads to greater user 

satisfaction and confidence in using the prosthetic hand. 

Proper orientation helps secure objects firmly in the prosthetic hand, preventing them 

from slipping or dropping. This is particularly important for tasks involving fragile or valuable 

items. Accurate grasping reduces the need for users to make multiple adjustments or exert 

excessive force, which can lead to fatigue and discomfort over time. 

Different objects require different grasping techniques. For example, grasping a 

cylindrical object like a bottle requires a different orientation than grasping a flat object like a 

book. Predicting the correct orientation allows the prosthetic hand to adapt to various objects 

seamlessly. The ability to adjust grasping orientation for different objects enhances the 

versatility of the prosthetic hand, enabling users to engage in a broader range of activities, from 

writing to personal care. 

Accurately predicting hand orientation enhances fine motor control, allowing for 

precise manipulation of objects. This is particularly important for activities that require delicate 

handling, such as threading a needle or assembling small components. Accurate prediction 

ensures that the prosthetic hand's movements are coordinated with the user's natural 

movements, creating a more intuitive and seamless user experience. 

By accurately predicting and automatically adjusting the hand's orientation, the 

prosthetic hand reduces the user's cognitive load [23]. This allows users to focus more on the 

task rather than the mechanics of controlling the prosthetic hand. Reduced cognitive effort and 
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increased ease of use encourage users to engage more actively with their prosthetic hand, 

promoting better device integration into their daily lives. 

Accurate grasp prediction can be used in rehabilitation settings to train users on how to 

use their prosthetic hands effectively. Data from grasping orientation predictions can inform 

personalized training programs tailored to individual users' specific needs and progress. 

Predicting hand-grasping orientation involves sophisticated AI and ML algorithms that 

analyze sensor data in real-time. This integration drives technological innovation and the 

development of more advanced, intuitive prosthetic devices. User feedback and data analysis 

can continuously improve grasp prediction models, leading to iterative enhancements in 

prosthetic hand design and functionality. 

1.6 Research Objective and Proposed Approach 

The primary goal of this work is to propose a sophisticated machine-learning model 

named AutoMerNet that can accurately predict hand-grasping orientation using biological 

signals, including EEG, EMG, and IMU. AutoMerNet integrates the strengths of three powerful 

machine learning architectures, including an Autoencoder for feature extraction, a Transformer 

for sequence analysis, and an Artificial Neural Network (ANN) for classification and final 

prediction. By leveraging and combining these advanced techniques, the aim is to enhance the 

control of prosthetic hands, making them more intuitive, responsive, and adaptable to the 

diverse needs of users. 

The development of AutoMerNet addresses several key challenges in the control of 

prosthetic hands. One of them is robustness in feature extraction. The Autoencoder component 

of AutoMerNet excels at extracting meaningful features from noisy and complex biological 

signals. This improves the accuracy of interpreting EEG, EMG, and IMU data, leading to more 

reliable control of prosthetic hands. The efficient design of the model enables real-time signal 

processing, which is crucial for seamless and natural control of the prosthetic device. 

AutoMerNet's architecture maximizes the use of available training data. The Autoencoder 

reduces the dimensionality of the input data, making it easier to train the subsequent 

Transformer and ANN models. Transformers excel at capturing long-range dependencies 

within data sequences. This particularly benefits EEG, EMG, and IMU data processing, where 

patterns can unfold over extended periods. Besides, by utilizing advanced feature extraction 

and sequence analysis techniques, AutoMerNet can potentially incorporate synthetic data 

augmentation methods to enhance the training process, thereby mitigating the issue of limited 
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real-world data. AutoMerNet can continuously learn and adapt to individual users' signal 

patterns, making the prosthetic hand more intuitive and reducing the time required for users to 

adapt to the device. The model's ability to provide accurate and real-time predictions can be 

integrated with user-friendly interfaces, facilitating a smoother learning curve and quicker user 

adaptation. 

1.7 Dissertation Structure 

This dissertation is divided into seven chapters, each crafted to explore a specific aspect 

of this domain. Chapter 1 provides a comprehensive overview of prosthetic hand control 

methodologies, highlighting existing limitations and the potential of AI to address them. It also 

clearly outlines the research objectives and the overall goal of the dissertation. 

Chapter 2 delves into the historical development of prosthetic hand control 

mechanisms, encompassing both traditional methods and contemporary advancements. It 

critically analyzes the strengths and weaknesses of existing control strategies and establishes 

the foundation for understanding the rationale behind the proposed AI-based approach. 

Chapter 3 explores the role of biological signals, such as EEG, EMG, and IMU data, in 

prosthetic hand control and provides a detailed explanation of each biological signal's 

characteristics and functionalities relevant to hand movement prediction. It discusses the 

potential advantages and challenges of utilizing these signals for AI-powered control.  

Chapter 4 meticulously details the data collection methodology, including selecting 

appropriate sensors, experimental protocols, and data recording procedures. It provides a clear 

description of the experimental setup, outlining the hardware and software components 

involved in data acquisition. Also, emphasizes the importance of ensuring data quality and 

consistency for successful AI model development. 

Chapter 5 introduces the proposed AI-based methodology for predicting hand 

orientation grasping, including the chosen AI model architecture and its training process. It also 

presents a novel algorithm designed to predict hand orientation based on the acquired biological 

signals. Furthermore, it provides a rigorous evaluation of the proposed algorithm's 

performance, including the metrics used and the obtained results. 

Chapter 6 offers a comprehensive discussion of the findings presented in Chapter 5. It 

analyzes the effectiveness of the proposed algorithm, compares the proposed approach with 

existing methods, highlights its advantages and limitations, and discusses the implications of 

the research findings for the advancement of AI-powered prosthetic hand control. 
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Chapter 7 summarizes the dissertation's key contributions to the field of prosthetic hand 

control with AI. It also suggests potential works for future research and concludes by 

emphasizing the significance of AI in revolutionizing prosthetic hand control and improving 

the quality of life for amputees. 
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CHAPTER 2 

 

2 CONTROLLING PROSTHETIC HANDS: BACKGROUND 

2.1 Introduction 

Research toward the creation of functional and intuitive prosthetic hands reaches a long 

history. The early devices that were developed focused on the restoration of basic hand 

function, often by using simple mechanical systems that provided limited dexterity and were 

cumbersome for the user. Early prosthetics were designed to help perform activities like 

holding and grasping an object, therefore offering the user some rudimentary functionality of 

the hand [24]. However, with technological progress, so did the potential of prosthetic hands. 

Recent developments aim for almost natural control and sensory feedback by using 

sophisticated electronics, sensors, and algorithms [25]. Modern prosthetic hands now feature 

myoelectric control, where sensors detect electrical signals from the user's muscles to control 

the prosthetic, allowing for more precise and varied movements. Researchers are trying to 

introduce mechanisms for sensory feedback, particularly haptic feedback, which would allow 

users to feel touch and pressure. This would fall directly into both increasing the applicability 

and intuitiveness of working with such devices in the first place. Also, researchers are working 

on prosthetics that can simulate one's natural hand, not only in appearance and move but by 

returning a great deal of functionality and sensation, hence hugely improving the quality of life 

for amputees. 

2.2 Early Days: Mechanical Marvels (Pre-1900s) 

Evidence of the earliest prosthetic hands dates back to ancient Egypt, where 

rudimentary devices were crafted from wood and bronze [26]. These early prosthetics were 

primarily cosmetic, aimed at restoring outward appearance after amputations. However, some 

designs, like the prosthetic toe dating back to 950-710 BC, hinted at the potential for 

functionality [26]. 
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Following the basic designs of the ancient world, the Middle Ages saw a renewed focus 

on prosthetics for soldiers returning from battle. Knights who lost limbs often used simple 

wooden prosthetics to aid in horseback riding or wielding weapons [26]. 

The Renaissance period (14th-17th centuries) marked a turning point in prosthetic hand 

design [27]. Advancements in metalworking and engineering led European artisans to create 

more intricate and functional devices. Iron, copper, and leather became the materials of choice, 

allowing for the construction of articulated joints and harnesses [28]. The most iconic example 

from this era is the prosthetic hand of German knight Götz von Berlichingen (1480-1562) [27]; 

see Figure 2.1.  

 

 

Figure 2.1 The prosthetic hand of German knight Götz von Berlichingen [27] 

This engineering marvel featured complex joints and a harness system, allowing for 

some degree of movement. However, control remained challenging, requiring manual 

manipulation of the device with the remaining hand.  

While Götz von Berlichingen's hand garnered significant attention, it wasn't the only 

innovation of the time. Artisans from France and Switzerland also pioneered using cables, 

gears, cranks, and springs to create prosthetic limbs with a wider range of motion, including 

grasping mechanisms in some hand designs [26]. These "steampunk" creations, while requiring 

external controls, laid the groundwork for future advancements in prosthetic technology. 



 

12 

 

2.3 Harnessing Electricity (1900s) 

The 20th century witnessed a revolutionary shift in prosthetic hand control with the 

introduction of myoelectric control. This technology utilizes the residual limb's electrical 

signals generated by muscle contractions (EMG).  

The first myoelectric prosthetics were rudimentary, featuring basic movements like 

opening and closing a single grasp invented by Russian scientist Alexander Kobrinski in 1960 

[29]. However, they represented a significant leap forward, offering amputees a more intuitive 

way to interact with the world. These early devices often relied on bulky amplifiers to process 

the EMG signals, limiting their practicality. 

2.4 EMG Takes Center Stage (Mid-20th Century) 

As the field of prosthetics advanced, researchers focused on improving myoelectric 

control. The role of EMG became crucial for several reasons. Advancements in 

microprocessors and miniaturization allowed for more sophisticated EMG signal processing. 

This enabled the development of prosthetic hands capable of performing multiple grasp 

patterns and functions [30]. Furthermore, comprehensive research on EMG control and pattern 

recognition laid the groundwork for developing more sophisticated prosthetic hands [9, 31]. 

2.5 Modern Advancements (Late 20th Century - Present) 

The late 20th century saw an explosion of innovation in prosthetic hand control. 

Researchers developed multi-function prosthetic hands with numerous degrees of freedom, 

allowing for a wider range of movements and improved dexterity [32]. Advancements in 

materials science led to the creation of lighter and more durable prosthetics. While EMG 

remained the primary control method, researchers began exploring additional modalities. 

EEG measures electrical activity in the brain. Though not directly used in prosthetic 

control, some studies explore its potential to understand user intent and supplement EMG 

signals [33]. 

IMUs track movement and orientation. Integration of IMUs in prosthetic hands allows 

for more natural control based on the user's arm and hand position [34]. 

Researchers are exploring how deep learning can be used to analyze surface 

electromyography (sEMG) signals, which detect muscle activity. This can lead to more 

intuitive and responsive prosthetic hands controlled by the user's own muscles. Another area 

of research focuses on mimicking the natural way the brain controls the hand. This could 
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involve things like using brain-computer interfaces (BCIs) to directly control the prosthetic 

hand [35]. Researchers are also considering reducing the mental and physical effort required to 

control a prosthetic hand. This could involve things like developing better control interfaces or 

using machine learning to anticipate the user's needs [36]. 

2.6 The Future: Brain-Computer Interfaces (Present - Ongoing) 

The significant achievement of prosthetic control lies in Brain-Computer Interfaces 

(BCIs). BCIs bypass the need for muscle signals and directly translate brain signals into 

commands for the prosthetic hand. This approach promises unparalleled control and a more 

natural feel for amputees [37]. Researchers actively explore using BCIs in prosthetic hand 

control. Early trials have shown promising results, with amputees achieving remarkable control 

over prosthetic limbs using their thoughts [38]. While some studies involve implants, 

significant progress is being made in non-invasive BCIs using EEG headsets. This offers a safer 

and more accessible option for applications like stroke rehabilitation with exoskeletons [39]. 

Advancements in electrode technology are crucial for BCIs. Recent developments include 

flexible, ultra-thin electrodes that minimize brain tissue damage and improve signal quality 

[40]; see Figure 2.2.  

 

 

Figure 2.2 Advanced prosthetic hand (DARPA) 
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Machine learning algorithms play a key role in deciphering complex brain signals. 

Machine learning techniques lead to more precise and faster control of prosthetic limbs and 

other BCI applications, see Figure 2.3. 

 

 

Figure 2.3 BCI translates brain signal to control prosthetics hand using ML algorithms 

These advancements are just the beginning. The future holds very impressive potential 

for BCIs with enhanced prosthetic control; some researchers even foresee the restoration of 

near-natural sensation and control to amputees. BCI could be combined with AR systems that 

made interaction with virtual objects frictionless by issuing brain commands to them. The 

potential for direct thought exchange between people represents a view into a possible future 

application of BCIs, which requires critical thinking and, above all, ethics. 

While there are still some challenges to long-term stability, safety, and ethics, the 

research on BCI is undergoing rapid development. It gives us a vision that the mind will be 

able to directly act on technology, opening doors to a new age of BCI. 

2.7 Summary 

The history of prosthetic hands is the enthralling narrative of the outstanding progress 

of human ingenuity and technological innovation. This journey, which began hundreds of years 

ago, has evolved from what was rudimentary and simplistic in its earliest past to the highly 

sophisticated, technologically advanced prosthetics of today. Prosthetic hands did exist in the 

past, although very basic and often terribly limited in their function, providing a semblance of 

normality rather than actual utility. Over time, with advancements in materials science, 

engineering, and biomedical technology, prosthetic hands have undergone a dramatic 

transformation. Modern prosthetic hands now offer a range of movements and capabilities, 
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including intricate finger movements, grasp strength adjustment, and even sensory feedback, 

allowing amputees to perform various daily tasks with greater ease and precision. Researchers 

and engineers continuously strive to enhance the functionality, comfort, and aesthetic appeal 

of these devices, aiming to restore not only physical capability but also a sense of normalcy 

and confidence to the lives of amputees. 

The future of prosthetic hands holds immense promise, particularly with the advent of 

BCIs. BCIs represent a groundbreaking leap forward, potentially enabling a more intuitive and 

natural connection between the brain and the prosthetic hand. This technology could allow 

users to control their prosthetic hand with their thoughts alone, resulting in movements that are 

more fluid and natural. Furthermore, ongoing research in neural integration and advanced 

robotics suggests that future prosthetic hands could provide even more sophisticated sensory 

feedback, closely mimicking the sensations of a natural hand. As we look ahead, the 

intersection of neuroscience, robotics, and artificial intelligence continues to pave the way for 

revolutionary advancements in prosthetic hand technology. These innovations not only aim to 

enhance the physical capabilities of amputees but also strive to improve their overall quality of 

life, offering new levels of independence and self-assurance. The journey of prosthetic hands 

is indeed a testament to human perseverance and the relentless pursuit of excellence in the field 

of medical technology. A summary of the evolution of prosthetic hands can be seen in Table 

2.1. 
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Table 2.1 The evolution of prosthetic hands; further details are elaborated in this chapter 

 

Year Control Method Functionality Materials 

Pre-1900s  Mechanical (Cosmetic) Rudimentary 

grasping 

Wood, bronze 

14th-17th centuries  Mechanical (Harnesses) Articulated 

joints for some 

movement 

Iron, copper, 

leather 

1480-1562  Mechanical (Harnesses) Complex 

movements 

require manual 

control 

Iron, leather 

1900s  Myoelectric (EMG) Basic opening 

and closing 

grasp 

Early electronics 

Mid-20th Century  Myoelectric (EMG) Multiple grasp 

patterns and 

functions 

Advanced 

microprocessors 

Late 20th Century 

– Present  

Myoelectric (EMG) Numerous 

degrees of 

freedom 

improved 

dexterity 

Lighter, more 

durable materials 

Present – Ongoing  Myoelectric (EMG) or 

Electroencephalography 

(EEG) 

More intuitive 

and responsive 

control, 

Unparalleled 

control, natural 

feel, minimized 

brain tissue 

damage, 

improved 

signal quality 

Advanced 

microprocessors, 

EEG technology, 

advanced 

algorithms 
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CHAPTER 3 

 

3 CONTROLLING THE ASSISTIVE DEVICES WITH BIOLOGICAL SIGNALS 

3.1 Introduction 

In robotics, an exoskeleton or prosthetics limb is an assistive device consisting of a 

structure exterior to the user having passive or motor-driven operation. Deployed devices 

consist of joints and links corresponding to those in the human body and, therefore, are 

categorized by the part of the body supported: upper extremity, lower extremity, or whole body. 

Some upper limb exoskeletons are very important in helping those with no functional upper 

limb. The human upper limb usually has seven degrees of freedom (DOF). However, some 

designs aim to provide all these DOFs in the exoskeleton also some may use less than seven 

DOFs. The design of these systems with considerations of biomechanics, safety, acquisition 

types, power sources, materials and weight are very complicated. Control of upper-limb 

exoskeletons based on human intention is a challenge. Proper selection of a control input signal, 

which allows understanding the user's motion intention, is crucial for the accuracy of the 

approach  [41]. A great amount of research has been conducted on various biological signals. 

Specifically, this was done for EMG, the electrical potential generated by muscle cells in the 

case of muscle contraction or rest. EMG signals seem very promising for control approaches 

since they directly reflect the motion intention. Brain signal monitoring has advanced and, in 

turn, brought to the fore electroencephalography as another feasible control technique for 

upper-limb exoskeletons. Another exoskeleton control method includes inertial Measurement 

Units. IMUs provide data relating to orientation, acceleration, and angular velocity, which can 

be important in carrying out motion analysis and control. Through the integration of data 

obtained from IMUs, exoskeletons can achieve precise and responsive control, enhancing their 

effectiveness in assisting and augmenting human movement. The combination of the EMG, 

EEG, and IMU signals can provide a comprehensive way for developing intuitive and effective 

control systems for an exoskeleton, as presented in this research. 
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3.2 Controlling the Prosthetics Hands with Biological Signals  

For centuries, researchers have dreamed of creating a prosthetic hand that seamlessly 

integrates with the human body. The key to achieving this is harnessing the body's natural 

control system using biological signals. This chapter explores how these signals have 

revolutionized prosthetic hand control and the exciting possibilities they hold for the future. 

3.2.1 Electrical Language of the Body 

Our muscles communicate with the brain using a complex language of electrical 

signals. When we think about moving a limb, the brain sends signals down the spinal cord, 

triggering electrical impulses in the muscles. These electrical impulses, called EMG signals, 

cause the muscles to contract and produce movement, see Figure 3.1. Pioneering researchers 

in the field of neuromuscular physiology, such as Luigi Galvani in the 18th century, laid the 

groundwork for understanding these electrical signals [42].  

 

 

Figure 3.1 Muscle signals (EMG) from eight parts of muscle during activities 

3.2.2 Characteristics of EMG Signals 

EMG offers a window into the intricate world of neuromuscular communication. EMG 

signals provide valuable insights into muscle function, fatigue levels, and even neurological 
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disorders by measuring the electrical activity generated by muscle fibers during contraction. 

However, interpreting these signals effectively requires a deep understanding of their inherent 

characteristics and the factors influencing their variability. 

One key characteristic of EMG signals is their stochastic nature. The amplitude, 

representing the voltage fluctuations, exhibits a random variation that can be approximated by 

a Gaussian distribution. This inherent randomness necessitates statistical analysis techniques 

for robust interpretation. Typically, the peak-to-peak amplitude of these signals falls within a 

range of 0 to 10 millivolts (mV) [43]. However, this value is not the sole indicator of muscle 

force; it requires careful consideration alongside other EMG features. 

The frequency content of EMG signals holds crucial information about muscle 

activation patterns. The usable energy resides within a frequency band ranging from 0 to 500 

Hz [44]. However, the most dominant portion of this energy spectrum is concentrated between 

50 and 150 Hz [44]. This specific frequency range reflects the firing rates of motor units, the 

fundamental building blocks of muscle control. Analyzing these frequency components allows 

researchers and clinicians to differentiate between various muscle activation states, such as 

isometric contractions (holding a weight) versus dynamic movements (lifting a weight). 

EMG signals are not static entities. They exhibit a high degree of inter- and intra-

individual variability. This means that EMG patterns can differ significantly not only between 

different people performing the same movement but also for the same individual performing 

the action repeatedly. Factors such as muscle fatigue, tiredness, and even sleep deprivation can 

demonstrably alter EMG characteristics. Additionally, psychological states like stress can 

introduce further variability, influencing muscle recruitment patterns. These inherent variations 

in EMG signals pose a significant challenge when developing control systems for assistive 

technologies. For instance, exoskeletons that rely on EMG for user intent recognition must be 

able to adapt to individual variability and account for the influence of fatigue or stress on the 

user's EMG patterns. By meticulously considering these characteristics and their underlying 

physiological mechanisms, researchers can design robust and user-centric control algorithms 

that optimize the performance and user experience of such assistive technologies. 

3.2.3 The Birth of Myoelectric Control 

The 1940s saw the realization that these EMG signals could be harnessed to control 

prosthetic limbs [44]. Pioneering researchers envisioned a future where amputees could control 



 

20 

 

their prosthetics intuitively, using their own muscle power [45]. Their work focused on 

developing basic myoelectric systems for controlling simple movements in prosthetic hands. 

Electrodes placed on the residual limb picked up EMG signals, and rudimentary control 

systems translated these signals into simple on/off commands for the prosthetic hand [46]. 

These early devices, while limited in functionality, laid the groundwork for future 

advancements. 

3.2.4 The Power of Pattern Recognition 

As technology advanced, researchers focused on refining myoelectric control. 

Introducing microprocessors and miniaturization allowed for sophisticated signal processing 

and pattern recognition algorithms. Pioneering work played a crucial role in developing these 

algorithms [47]. These algorithms could analyze the complex patterns of EMG signals 

generated by different muscle contractions. This enabled the development of prosthetic hands 

capable of performing multiple grasp patterns and functions, mimicking a wider range of 

natural hand movements. 

3.2.5 Benefits of EMG Signals 

EMG signals offer several advantages for controlling prosthetic hands. One key benefit 

is their intuitive nature. Myoelectric control utilizes existing neural pathways for hand 

movement, creating a more natural feel for amputees than mechanical controls [48]. Studies 

have shown that this can significantly improve dexterity and task completion. For instance, 

research demonstrated that myoelectric control yielded better results than other methods. 

Furthermore, EMG signals allow for improved dexterity in prosthetic hands. Advanced 

pattern recognition algorithms can translate these signals into complex movements, enabling 

users to control individual fingers or perform specific grasp patterns. This enhances the 

functionality and allows for a more natural interaction with objects. Studies have achieved 

near-natural grasp patterns in advanced prosthetic hands using myoelectric control [49]. 

Finally, EMG signals hold promise for incorporating biofeedback into future 

prosthetics. By analyzing these signals, the prosthetic hand could provide feedback on grasp 

strength and hand position. This information can improve the user's control and coordination. 
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3.2.6 Challenges and Limitations of EMGs in Controlling Prosthetics 

While EMG signals offer exciting possibilities for prosthetic control, there are still 

challenges to overcome. One key hurdle lies in discerning complex signals. Differentiating 

between the subtle EMG signals from various muscle groups can be tricky. This limits the level 

of control amputees have over individual fingers and finer movements. Some researchers are 

actively exploring solutions [50]. Their work focuses on developing advanced signal-

processing techniques and machine-learning algorithms to improve the ability to interpret these 

intricate signals. 

Another challenge is phantom limb pain. Some amputees experience this phenomenon, 

which can disrupt the generation of clear EMG signals. This, in turn, can significantly affect 

their ability to control their prosthetic hand. Studies by [51] are investigating alternative control 

methods for amputees facing this challenge. Their research explores the use of noninvasive 

brain-computer interfaces (BCIs) as a potential solution for those experiencing phantom limb 

pain. 

3.3 Electroencephalogram (EEG) for Prosthetic Control 

Electroencephalography (EEG) is a sophisticated, non-invasive technique for 

measuring the brain's electrical activity. By placing electrodes on the scalp, EEG captures the 

minute voltage fluctuations produced by neuronal activity. This method provides critical 

insights into brain function and is increasingly being explored for its potential in controlling 

prosthetic limbs. 

3.3.1 The Motor Cortex and Movement Control 

The motor cortex, located in the frontal lobe of the brain, is primarily responsible for 

planning, controlling, and executing voluntary movements [52]; see Figure 3.2. It consists of 

several regions, including the primary motor cortex (M1), the premotor cortex, and the 

supplementary motor area. The primary motor cortex, situated on the precentral gyrus, is 

critical in generating neural impulses that control movement execution. 
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Figure 3.2 The motor cortex is located in the frontal lobe of the brain 

EEG electrodes placed over the motor cortex can capture the electrical activity 

associated with movement planning and execution. The recorded EEG signals from this region 

reflect the brain's motor commands and can be analyzed to infer the user's intended movements. 

This information is crucial for developing brain-computer interfaces (BCIs) for prosthetic 

control. 

3.3.2 Structural Dynamics and Characteristics of EEG 

The human brain comprises billions of neurons that communicate via electrical 

impulses. EEG signals are like a complex symphony characterized by three key features: 

amplitude, frequency, and phase. Amplitude is measured in microvolts (µV) and reflects the 

strength of the electrical activity. Higher amplitudes generally indicate greater synchronization 

of neuronal activity within a specific brain region. EEG captures the aggregate electrical 

activity of these neurons, particularly within the cerebral cortex, the brain's outermost layer. 

The resulting EEG signal is a complex waveform segmented into various frequency bands, 
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each correlating with distinct brain states. By analyzing the dominant frequencies in the EEG 

signal, researchers can infer the user's brain state and use this information for various purposes, 

such as controlling external devices. EEG waves can be classified with different frequencies 

[53]. For example: Delta waves (0.5-4 Hz): Deep sleep or unconsciousness. Theta waves (4-7 

Hz): Drowsiness, meditation, or daydreaming. Alpha waves (8-13 Hz): Relaxed wakefulness 

with eyes closed. Beta waves (13-30 Hz): Alertness, focused attention, or problem-solving. 

Gamma waves (above 30 Hz): Higher cognitive functions and information processing. See 

Figure 3.3. 

 

 

Figure 3.3 EEG waves with different frequencies 

The phase of an EEG signal refers to the position of its waveform cycle at a specific 

point in time. The relative phase between different brain regions can provide information about 

their functional connectivity, revealing how various parts of the brain communicate. 

EEG also presents inherent trade-offs in its ability to capture spatial and temporal 

details of brain activity. Compared to other imaging techniques like fMRI, EEG has a relatively 

low spatial resolution [54]. This means it cannot pinpoint the exact source of brain activity with 

high precision. The recorded signal reflects the combined activity from a group of neurons 

beneath the electrode. 

On the other hand, EEG excels in its temporal resolution. It can capture rapid changes 

in brain activity with high fidelity, making it ideal for real-time applications. This allows 
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researchers to study the dynamic fluctuations in brain activity that occur during thought or 

movement, which is crucial for applications like brain-computer interfaces. 

Understanding these characteristics is essential for effectively interpreting EEG signals 

and unlocking their potential for various applications, particularly in prosthetic control. The 

ability to decode user intent and translate it into action holds immense promise for improving 

the lives of amputees. 

3.3.3 Advantages of EEG in Prosthetic Control 

EEG offers several advantages over traditional methods for controlling prosthetic 

limbs. Firstly, EEG boasts intent-based control [55]. It detects brain activity associated with 

the intention to move a limb, even before any muscle activation occurs. This distinction makes 

EEG a more intuitive and natural control mechanism, potentially leading to smoother and more 

precise prosthetic control. Another key benefit of EEG is its ability to mitigate phantom limb 

pain. Amputees often experience discomfort and pain sensations originating from the missing 

limb [56]. This pain can hamper EMG control systems, which depend on muscle signals. EEG, 

however, bypasses the need for muscle activation, offering a significant advantage for those 

struggling with phantom limb pain. 

Also, EEG presents exciting possibilities for developing enhanced multimodal control 

systems. Combining EEG with EMG allows for a more nuanced and sophisticated approach. 

EEG can be used to decode high-level commands, such as opening or closing the hand. EMG 

can then be employed to fine-tune individual finger movements. This synergy between the two 

technologies has the potential to unlock a new level of control and functionality for prosthetic 

limbs. 

3.3.4 Challenges and Limitations of EEG in Controlling Prosthetics Hand 

Electroencephalography (EEG) holds immense promise for the future of prosthetics. 

However, several technical hurdles must be addressed to realize its full potential. The first 

major challenge lies in the inherent complexity of EEG signals [57]. These signals are faint and 

intricate, requiring advanced processing techniques to decipher the user's intended movements. 

Decoding these signals with accuracy hinges on sophisticated algorithms and machine-learning 

models. Without these advancements, translating subtle brain activity into precise control 

commands remains a significant obstacle. 
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Another limiting factor is the restricted spatial resolution of EEG [58]. Unlike imaging 

techniques that provide detailed anatomical information, EEG struggles to pinpoint the exact 

origin of brain activity within the skull. This limitation makes distinguishing between closely 

spaced neural signals difficult, potentially leading to misinterpretations of complex control 

intentions. Overcoming this hurdle is crucial for enabling users to send nuanced commands 

and achieve a wider range of finer motor control with their prosthetics. 

Furthermore, successfully implementing EEG-based prosthetics requires a high degree 

of personalization [59]. Each individual's brain activity patterns are unique. To ensure optimal 

control, extensive calibration and training sessions are necessary. This personalization process 

allows the system to adapt to the user's specific EEG signature and translate it into accurate 

commands for the prosthetic limb. While personalization offers a significant benefit in the long 

run, it creates an initial barrier that needs to be smoothened for wider adoption of this 

technology. 

3.3.5 Combining EEG and EMG for Enhanced Prosthetic Control 

The field of prosthetic control is constantly evolving, with researchers seeking solutions 

that offer greater intuitiveness, precision, and reliability. One promising approach lies in the 

synergistic combination of EEG and EMG signals [60]. By leveraging the unique strengths of 

each modality, this hybrid system paves the way for a more robust and nuanced control 

experience for prosthetic hand users. The cornerstone of this approach lies in the 

complementary nature of EEG and EMG data. EEG excels at capturing high-level information 

about the user's intent to move, decoding brain activity even before any physical muscle 

activation occurs. EMG, on the other hand, shines in its ability to detect electrical signals from 

muscle contractions, enabling precise control over individual finger movements. This synergy 

ensures that both the planning (intention) and execution (movement) phases of limb control are 

accurately represented within the control system. 

This combined approach translates to several key advantages. Firstly, the control system 

can achieve significantly higher accuracy and responsiveness by utilizing EEG to initiate 

movements and then employing EMG to fine-tune the details [61]. This allows for a more 

natural and intuitive prosthetic control experience, closely mimicking how biological limbs 

function. Additionally, EEG signals offer a significant benefit as they are not influenced by 

factors like muscle fatigue or phantom limb pain, which can degrade EMG control. Conversely, 

EMG can address the limitations of EEG's spatial resolution by providing more precise control 
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over individual finger movements. This creates a robust system where each modality 

compensates for the limitations of the other. Finally, combining EEG and EMG opens doors 

for developing adaptive control strategies. Over time, the system can learn and adjust to each 

user's specific neural and muscular patterns. This continuous learning process can lead to 

significant improvements in functionality and user experience over the long term. As the 

system becomes more attuned to the individual, prosthetic control becomes increasingly 

intuitive and seamless. 

3.4  Inertial Measurement Units (IMUs) for Prosthetic Control 

Inertial Measurement Units (IMUs) are advanced sensors essential for capturing motion 

and orientation data [61]. They are crucial in various applications, including the control of 

prosthetic limbs, where they provide real-time feedback on movement and positioning, Figure 

3.4. 

 

 

Figure 3.4  IMU device is used to record data in three dimensions: X, Y, and Z 

3.4.1 Characteristics and Components of IMUs 

IMUs capture motion and orientation in three-dimensional space, providing a 

comprehensive understanding of linear and rotational movements [62]. IMUs typically consist 

of three primary components, each playing a vital role in capturing different aspects of motion: 
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• Accelerometers: 

Function: Measure linear acceleration along three orthogonal axes (x, y, z). 

Characteristics: Provide data on the rate of change in velocity, indicating how fast an object 

moves in a particular direction. They are sensitive to both static (e.g., gravity) and dynamic 

(e.g., sudden movement) forces. It is used for detecting tilts, vibrations, and motion, which are 

essential for understanding the precise movements of a prosthetic limb. 

• Gyroscopes: 

Function: Measure rotational velocity around three axes. 

Characteristics: Capture the rotation rate, helping to determine how an object is turning or 

spinning. They are crucial for tracking orientation and angular changes over time. It provides 

critical data for stabilizing and controlling the orientation of the prosthetic limb, ensuring 

smooth and accurate movements. 

• Magnetometers: 

Function: Measure the strength and direction of the magnetic field in three dimensions. 

Characteristics: They offer absolute orientation by detecting the Earth's magnetic field. They 

often correct drift in gyroscope data and provide a stable heading reference. They enhance the 

accuracy of orientation measurements, especially useful in environments where precise 

directional data is required. 

3.4.2 The Role of IMU Signals in Controlling Prosthetic Hands 

IMUs provide critical data on the movement and orientation of prosthetic limbs, which 

can be used to refine control algorithms and improve the functionality of the prosthetic hand. 

When placed on different parts of the prosthetic limb, IMUs capture detailed motion data that 

can be analyzed to understand the user's intended movements and provide precise control over 

the prosthetic hand. IMUs have emerged as valuable tools for enhancing functionality and user 

experience in prosthetic control. These compact sensors pack a powerful punch, offering a 

unique set of advantages that contribute to more intuitive and effective prosthetic control. 

The first key benefit of IMUs lies in their ability to provide real-time feedback. Unlike 

some other sensors, IMUs deliver immediate data on the motion and orientation of the 

prosthetic limb. This allows the control system to adjust on the fly, ensuring the prosthetic hand 

accurately reflects the user's intended movements. Furthermore, IMUs boast exceptional 

enhanced motion tracking capabilities. They typically integrate both accelerometers and 

gyroscopes. Accelerometers measure linear acceleration, detecting changes in speed and 
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direction. Gyroscopes, on the other hand, track rotational movements. This combined 

functionality allows the system to comprehensively understand the user's limb movements, 

encompassing both linear actions like reaching and rotational movements like wrist rotation. 

This comprehensive data stream empowers the control system to translate the user's intentions 

into more natural and nuanced prosthetic movements. 

Beyond real-time feedback and motion tracking, IMUs offer the advantage of robust 

performance. They are designed to function effectively in various environments and conditions. 

Unlike some sensors that might be susceptible to environmental factors, IMUs can operate 

reliably regardless of lighting conditions, temperature fluctuations, or even mild moisture 

exposure. This ensures consistent and dependable data for prosthetic control, allowing users to 

confidently interact with their surroundings without worrying about sensor malfunction. 

Besides, IMUs demonstrate remarkable versatility. To create a more comprehensive 

control system, they can be seamlessly integrated with other sensor modalities, such as EEG 

and EMG. EEG can decode the user's intent to move, while EMG can detect muscle activation 

for fine-tuning individual finger movements. IMUs, with their real-time motion data, bridge 

the gap between intent and execution, providing valuable information about the limb's position 

and orientation. This synergy between different sensors unlocks a new level of control, 

allowing users to achieve a wider range of movements and interact with the world in a more 

natural and intuitive way. 

3.4.3 Combining IMUs, EEG, and EMG for Advanced Prosthetics Control 

The research for ever-more intuitive and natural control of prosthetic hands has led us 

to a powerful approach which is integrating data from IMUs, EEG, and EMG. This new 

synergistic combination leverages the strengths of each modality, creating a robust and 

comprehensive control system that unlocks a new level of functionality for prosthetic users. 

The cornerstone of this approach lies in the complementary nature of the data provided by each 

sensor. IMUs excel at capturing real-time information about the prosthetic hand's motion and 

orientation. EEG offers a unique window into the user's brain activity, decoding their intent to 

move even before any physical muscle activation occurs. Finally, EMG masters its ability to 

detect electrical signals from muscle contractions, enabling precise control over individual 

finger movements. By combining this data, the control system gains a holistic understanding 

of the user's intended movements, encompassing both planning (through EEG) and execution 

(through IMU and EMG). 
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This multi-sensor approach can leverage IMU data to refine the control signals derived 

from EEG and EMG. For instance, EEG might indicate the user's desire to grasp an object, but 

IMU data can help determine the precise hand orientation and trajectory needed for a successful 

grasp. This refinement leads to more precise and responsive prosthetic hand movements, 

mimicking natural limb function more closely. Additionally, by incorporating multiple data 

sources, the system becomes less reliant on any single sensor. If one sensor experiences signal 

degradation or malfunction, the others can compensate, ensuring enhanced reliability and 

robustness of the overall control system. 

Combining IMU, EEG, and EMG data opens doors for developing truly adaptive 

control strategies. As the user interacts with the prosthetic hand, the system can continuously 

learn and adjust to their specific patterns of movement and muscle activation. Over time, this 

ongoing learning process can significantly improve functionality and user experience. Also, 

this continuous adaptation personalizes the prosthetic control experience, allowing users to 

interact with the world with greater confidence and dexterity. The future of prosthetic control 

lies in the seamless integration of these diverse data sources, providing users with more natural, 

intuitive, and responsive control over their prosthetic limbs. 
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CHAPTER 4 

 

4 DATA COLLECTION, EXPERIMENT, AND TOOLS 

4.1 Introduction 

Human biological data, represented by EEG, EMG, and IMU, is key to further 

development in prosthetic hand control. These three flows of data provide different but 

complementary information regarding the neural, muscular, and movement dynamics of the 

user and, accordingly, help in the development of more responsive and intuitive prosthetic 

devices. We can thus exploit these different data sets in driving sophisticated algorithms to 

finally translate the complex interplay between neural signals, muscle activity, and limb 

movements into strict commands for prosthetic devices.  

4.1.1 EEG Insights 

EEG data capture the electrical activity of the brain, including neural processes related 

to motor intentions. The motor cortex is at the core of this issue. It is in charge of monitoring, 

controlling, and executing all voluntary movements during planned actions. It provides direct 

access to the activity from the brain, which helps in decoding the intention behind the different 

movements that the hand can make. This information is essential in creating a seamless 

interface between the user's brain and the prosthetic hand.  

From EEG signals, we can decode specific brainwave patterns that accompany 

different hand movements in the motor cortex. This ability may enable neural interfaces by 

which it will be possible for users to control prosthetic hands by thought. Such interfaces could 

especially benefit people with high-level amputations or spinal injuries since they could work 

directly routing to prosthetic control bypassing residual limb muscle signals. My translation 

of motor cortex activity and movements can enhance usability and functionality in prosthetic 

devices. 
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4.1.2 EMG Insights 

EMG data provide information regarding the detailed muscle contractions and 

electrical activities of muscles involved in hand movements. This kind of information is 

critical in trying to understand how the user's residual muscles intend to move a missing limb. 

With such EMG signals, fluid control is achieved and thus natural movement of the prosthetic 

hand is possible in real time. It is further supported by the fact that data from an EMG can be 

used to estimate muscle fatigue and regulate the prosthetic's response to ensure user comfort 

and usability. Two major player muscles are involved in hand movements and functionality, 

especially in grasping: flexor and extensor muscles. These are antagonist muscles that lie on 

opposite sides of the forearm to facilitate hand movements. The flexor muscles lie primarily 

on the anterior aspect of the forearm and flex the fingers and the wrist. Major flexor muscles 

involved in hand actions are the flexor digitorum superficialis and flexor digitorum profundus. 

These muscles contract to bend the fingers, hence enabling the hand to grasp and hold objects. 

Flexor EMG signals provide a key carrier of information about force levels and timing, which, 

during grasp or pinching activities, is necessary to control the exact functioning of a prosthetic 

hand. On the other hand, extensor muscles are located on the posterior or back side of the 

forearm. In relation to hand movements, extensor digitorum and extensor carpi radialis are 

major extensor muscles. They are responsible for extending the fingers and the wrist, which 

enable the hand to release an object and to open the fingers. EMG signals from the extensor 

muscles become equally important since they provide information on the relaxation and 

extension phases of hand movements. 

The type and nature of the tasks performed in the exercises have a great similarity in 

affecting the EMG signal of both flexor and extensor muscles. Activities containing fine 

actions, such as writing or picking up small objects, created different signal patterns compared 

with gross motor activities. High-frequency low-amplitude signals may appear in the flexor 

muscles owing to fine control. In contrast, tasks that require a strong grasp, such as holding a 

heavy weight, result in large-amplitude and low-frequency EMG signals from flexor muscles 

due to the chronic and powerful contractions. Understanding the detailed EMG profiles of 

flexor and extensor muscles is paramount for designing advanced prosthetic hands. These 

profiles help develop algorithms to accurately interpret muscle signals and translate them into 

precise prosthetic movements. By monitoring and analyzing the EMG data from these 

muscles, it is possible to create prosthetic devices that can adjust their response based on the 

detected muscle activity, enhancing their functionality and user experience. 
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4.1.3 IMU Insights 

IMUs can provide valuable data about limb orientation and movement manifests, such 

as three-dimensional acceleration readings, rotation readings, and angular velocity readings 

along the x, y, and z axes. These are salient features that describe spatial dimensions of hand 

movements. 

The IMU sensors are quite critical to prosthetic hands, as they enhance their 

capabilities. Various data are captured by these sensors, giving valuable information about 

hand movements and their orientation in three-dimensional space. One of the major kinds of 

data captured is acceleration data. In a simple way, this data measures changes in the speed of 

the hand and is, therefore, very helpful in determining the speed and even direction of hand 

movements. If data were analyzed, then the same kind of feats to be achieved by users of 

prosthetic hands would be: detect rapid motion that would snap the fingers or measure 

precisely hand steadiness for delicate tasks. 

IMU sensors further capture information on rotation, which is the orientation of the 

hand with respect to the arm in space. This information is valuable in ascertaining the exact 

orientation of the hand. This will include hand-orientation estimation for tools, rotation 

tracking for more complex manipulation actions like turning a doorknob. 

Finally, the IMU sensor component provides data on angular velocity, that is, the 

quickness of change in rotational position of the hand. This is crucial in capturing smooth 

rotations for the natural look of movements and in tasks requiring timing of rotational speed 

and precision; for example, the pouring of liquids. 

4.1.4 Comprehensive Motion Analysis 

Attaching EEG sensors to the scalp over the motor cortex and EMG sensors to the 

extensor and flexor muscles of the forearm provides valuable information from neural and 

muscular activity during the grasping process of different objects. However, to gain complete 

knowledge of hand movement, we have also placed IMU sensors on the hand at three different 

locations: the palm, forearm, and upper arm. This is the optimal sensor setting for capturing 

motion dynamics with high precision and therefore shall be combined with the source signals 

from EEG and EMG to attain high control over and accuracy in prosthetic hand movements. 

This robust approach can help the prosthetic device to simulate movements of the natural hand 

effectively and provide precision functionality in the user experience. This multisensory 



 

33 

 

approach paints a rich picture and offers crucial advantages in prosthetic hand control, offering 

key insights into hand movements. 

Spatial and temporal information extracted from IMU combined with neural activity 

recorded by EEG and muscular activation obtained by EMG allowed for a much more accurate 

prediction of intended hand motion. Further, real-time feedback from IMUs on hand position 

and movement can allow a user to correct the actions of the prosthetic hand into considerably 

smoother and more natural control. These combined data in the control algorithms design can 

adapt to each user's individual movement patterns, providing an enhanced response time to 

the prosthetic hand and making the whole reaching process much more intuitive and less 

effortful, reducing the user's cognitive load. 

4.2 Set Up and Devices  

4.2.1 OpenBCI for Recording EEG and EMG Data 

We selected the OpenBCI system to collect EEG and EMG data. OpenBCI was chosen 

for its versatility, affordability, and high-quality data acquisition capabilities. The system is 

compatible with various sensors and offers customizable options, making it ideal for our 

research needs. It has a board named Cyton biosensing, which is an Arduino-compatible, 8-

channel neural interface with a 32-bit processor that can sample EEG and EMG. Also, a dongle 

that is required to use the Ganglion board with a Mac, Windows, or Linux computer. It features 

Bluetooth 4.0 standards, a high-speed transfer rate, and simple pairing. OpenBCI's open-

source nature allows for extensive customization and integration with other systems, which is 

crucial for our multi-modal data collection approach. Figure 4.1 shows the OpenBCI GUI 

while recording EEG and EMG data.   
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Figure 4.1 OpenBCI GUI for eight channel setups to record EEG and EMG siganls 

The EEG signals were recorded using an Ultracortex-mark-IV EEG headset. The 

device is powered with several features to improve performance and usability. It has some 

place for sensors that are actually strategically located in a place in the motor cortex to pick 

up what might constitute relevant brain activity during a hand movement. The motor cortex is 

one critical area for motor control, and placing sensors there ensures that the most relevant 

signals will be picked. We recorded detailed high-resolution EEG data using an eight-channel 

setting. The use of multiple channels picks up a large part of neural activity, thereby enabling 

us to examine the details of the operation of the brain in overseeing hand movements in great 

detail. The headgear is designed to be comfortable, allowing subjects to wear it continuously 

without experiencing unease. This is particularly important for maintaining data quality over 

long recording sessions. (Figure 4.2) 
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Figure 4.2 Ultracortex Mark IV EEG headset with EEG recording sensors 

We recorded the EMG signals from the extensor and flexor muscles of the forearm 

through sensors using the OpenBCI system. The exact and reliable data taken from these 

muscles are critical to the analysis of the activities of muscles during several hand grasps. 

OpenBCI features a flexible implementation of EMG sensors, which simplifies the process of 

integrating and working with these sensors, Figure 4.3 demonstrates sensors placement for 

recording EMG signals, here elbow is the reference.  
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Figure 4.3 EMG sensors placement for recording muscle signals through OpenBCI setup [63] 

This adaptability allows seamless customization to fit various research and application 

needs, ensuring that users can efficiently capture and analyze muscle activity data without 

encountering significant technical obstacles.  

4.2.2 Witmotion Bluetooth IMU Sensors 

IMU data were acquired by the Witmotion Bluetooth IMU sensors, providing angular 

velocity, angles, and acceleration data in three dimensions. The adopted IMU devices are 

embedded with a three-axis accelerometer and gyroscope, which makes it possible to gain 

high-resolution information on orientation and movement. The accelerometer is a device that 

measures linear acceleration, whereas a gyroscope captures rotational movement; thus, these 

two provide information on hand motion. Witmotion IMUs have Bluetooth connectivity, thus 

facilitating smooth data transmission and synchronization with other recording devices; this 

setup is thus not too complicated to reduce chances of data loss and interference. Besides, 

these inertial sensors are small, lightweight, and attach conveniently to parts of the body 

without interfering with the movement. 

We chose three key locations on the hand: the palm, forearm, and upper arm. The 

reason for choosing these parts is that they show the dynamics of the hand while performing 

any task comprehensively. The palm sensor captures fine motor movements and subtle shifts 

in hand orientation. The forearm sensor provides information on the overall direction and 

velocity of the hand. The upper arm sensor captures broader motion patterns and contributes 
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to understanding the relationship between upper and lower arm movements. By strategically 

placing sensors on these three locations, we ensure the collection of detailed and 

comprehensive motion data, enhancing the control and accuracy of prosthetic hand 

movements while grasping different objects in experiments.  

Figure 4.4 illustrates the placement of IMU sensors and EMG sensors on a participant 

for data recording. The IMU sensors are positioned at three specific locations: the back of the 

hand, the forearm, and the upper arm. EMG sensors are placed on the extensor and flexor 

muscles of the forearm. This setup ensures comprehensive data collection, capturing the 

necessary information from multiple points to analyze muscle activity and movement 

accurately during various tasks. 

 

 

Figure 4.4 IMU sensors and EMG sensors placements for recording data 

4.2.3 Custom Graphical User Interface (GUI) 

A custom-made graphical user interface was designed in order to be able to exactly 

coordinate and synchronize collection of EEG, EMG, and IMU data. We were able to start 
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and pause the recording of all data streams with creating this interface, as it was an integral 

part of our experimental setting. This GUI allowed us to define the recording process in such 

a way that during the performance of tasks, all data was correctly synchronized and perfectly 

aligned during recording. This was a very critical component in preserving data integrity and 

improving the efficiency of our data collection exercise, Figure 4.5. 

 

Figure 4.5 Proposed GUI for launching devices simultaneously 

Our custom GUI served as a central point, alleviating the challenge of individually 

operating all devices that record data: EEG, EMG, and IMU. In this way, we were able to start, 

monitor, and stop recordings for all of these devices from a single, unified interface. This 

reduced the data collection procedure to the minimum possible complexity with minimal 

possible human error in the crucial moments of recording. The GUI offered an exact 

synchronizing of data acquisition on all three recording devices. It provided sending start and 

stop commands simultaneously, which guaranteed that data collection for EEG, EMG, and 

IMU for each subject started and stopped at the same moment. This is a very high level of 

Launch OpenBCI 

Launch IMUWit Motion 
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precision in synchronization that was very important to achieve because we had to analyze 

and compare data from all three sources for each exact moment of the execution of a certain 

task by each participant. 

This synchronized data collection process further allowed us to see possible 

relationships between these various data streams. For example, the GUI will allow us to see if 

there is a spike in EEG activity when a subject is performing some task and whether this spike 

is combined with a change in the EMG data or how the IMU sensor readings behave at that 

same moment. Such connections could be unearthed by carefully examining the synchronized 

data to understand in depth how these physiological and motion-related signals interplayed 

with one another. 

4.2.4 Data Collecting Protocol 

The Institutional Review Board of the University of Tennessee at Chattanooga 

(FWA00004149) has approved this research project #23-111. All participants freely 

volunteered to participate and signed a consent form.  

In this work, we conducted a study on 13 participants, each performing seven different 

grasping tasks in varied scenarios. The range of tasks was chosen to represent the most 

common hand grasps in daily activities. To ensure realism and practicality, specific objects 

were used that closely approximate real-world scenarios. Figure 4.6 demonstrates all seven 

objects for the experiments. The chosen tasks included: 

• Power Grasp: Holding a hammer tightly and firmly to hit an object. This type of grasp 

requires significant force and coordination, primarily engaging the forearm muscles. 

• Precision Grasp: Holding a pen for highly precise, fine motor actions. This grasp 

engages fine motor skills and coordination between the thumb and fingers, essential 

for tasks such as writing and detailed work. 

• Lateral Grasp: Grasping a key in a way that simulates inserting and turning it. This 

grasp involves the thumb and the side of the index finger, representing an action that 

requires lateral pinch strength. 

• Hook Grasp: Carrying a suitcase to simulate a grasp where the fingers form a hook, 

excluding the thumb. This type of grasp is suitable for carrying heavy weights for 

extended periods, engaging the flexor muscles of the fingers. 
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• Pinch Grasp: Holding a small cube to describe the handling of small items between 

the thumb and one or more fingers. This grasp is crucial for tasks that require fine 

precision and control, typically when holding small objects. 

• Cylindrical Grasp: Holding a bottle to simulate the grasp of cylindrical objects. This 

is common in everyday life, such as when holding a drink, and it engages coordination 

and strength in all fingers and forearm muscles. 

• Spherical Grasp: Grasping a ball to represent the grasp of spherical objects. This type 

of grasp involves the whole hand and is useful for various activities that require 

encompassing and holding round objects securely. 

These tasks were selected to provide a comprehensive representation of hand 

movements and grasps, capturing the variability in human hand use in daily life. We aim to 

accommodate a wide array of functional demands by including tasks that differ in complexity 

and required grasp type. 

 

 

Figure 4.6 Objects used in the biomechatronic lab to generate hand-grasping UTC dataset 

We attached the EEG headset to the participant's scalp, the EMG sensor to the 

participant's forearm muscle, and the IMU sensors to the palm, forearm, and arm, see Figure 

4.7. The task protocol involved 5 seconds of grasping followed by 5 seconds of release, 

repeated continuously for the duration of one minute. We asked each participant to perform 

each grasping task for one minute. This protocol ensured consistent and repeatable data 

collection across all participants and tasks. The repetition of the grasp and release cycle 

provided a rich dataset for analyzing the dynamics of hand movements and muscle activity.  



 

41 

 

 

Figure 4.7 Placement of EEG, EMG, and IMU sensors for collecting data from participant 

We recorded EEG, EMG, and IMU data simultaneously during the tasks. By 

implementing this custom GUI, we ensured that all data streams were initiated and terminated 

precisely simultaneously, maintaining perfect temporal alignment. This level of 

synchronization was crucial for our analysis, as it allowed us to correlate neural, muscular, 

and motion data accurately, leading to more robust and reliable findings in our study of hand 

grasping orientation for prosthetic hand control. The GUI enhanced the efficiency of our data 

collection process and significantly improved the quality and reliability of the collected data. 

The collected data were then processed and analyzed to develop and fine-tune our 

proposed predictive models for hand-grasping orientation, ultimately enhancing the control 

strategies for prosthetic hands. The synchronized data collection and comprehensive feature 

extraction were critical for the accuracy and reliability of our models. The comprehensive 

collection of EEG, EMG, and IMU data using advanced devices like the OpenBCI system and 

Witmotion IMU sensors provided a robust dataset for our research. This meticulous approach 

to data collection and the use of sophisticated tools were pivotal in achieving the goals of our 

study on predicting hand-grasping orientation for prosthetic hand control. Integrating multiple 

data sources allowed us to capture the full complexity of hand movements, leading to more 

accurate and responsive prosthetic control systems.  
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CHAPTER 5 

 

5 METHODOLOGY 

5.1 The Transformative Role of AI and ML in Prosthetic Hand Control  

Artificial Intelligence (AI) and Machine Learning (ML) have brought groundbreaking 

advancements to prosthetics, particularly in developing and controlling prosthetic hands. By 

integrating AI and ML, researchers and engineers are creating intelligent prosthetic devices 

that can seamlessly interpret and respond to the user's neural and muscular signals. This 

integration results in a more natural and intuitive user experience, allowing individuals to 

regain functionality and independence. AI and ML algorithms play a pivotal role in 

personalizing prosthetic control. These algorithms can learn and adapt to users' unique neural 

and muscular signal patterns. Over time, this adaptive learning process enhances the precision 

and efficiency of the prosthetic hand's movements, making it more responsive to the user's 

intentions. Such personalization is crucial for prosthetics to effectively assist users in various 

daily activities, from simple tasks like grasping objects to more complex actions requiring fine 

motor skills. 

The adaptability of AI and ML in prosthetic devices improves the prosthetic hands' 

functionality and significantly enhances the user's quality of life. By providing a prosthetic 

hand that responds accurately and swiftly to the user's commands, AI and ML technologies 

help users perform everyday tasks with greater ease and confidence. This technological 

advancement leads to increased independence and a better overall experience for individuals 

relying on prosthetic hands. Incorporating AI and ML in prosthetic hands represents a 

significant technological leap forward. These advanced systems not only mimic natural hand 

movements but also adapt to the user's specific needs, ensuring a higher level of precision and 

control. As AI and ML continue to evolve, their role in prosthetic hand control will 

undoubtedly expand, offering even more sophisticated solutions to enhance the lives of 

individuals with limb loss. 
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5.2 Data Collection and Preprocessing 

5.2.1 Data Collection 

In this work, we focus on the collection of three kinds of data: EEG, EMG, and IMU 

signals. The data were recorded simultaneously from 13 subjects while executing seven 

different grasping tasks with specific objects. This includes power Grasp executed with a 

hammer, precision grasp executed with a pen, lateral grasp performed with a key, hook grasp 

executed with a suitcase, pinch grasp performed with a small cube, cylindrical grasp 

performed with a bottle, and spherical grasp performed with a ball. Each gesture was 

performed for 1 minute and included 5 seconds of grasp, followed by 5 seconds of release, in 

a continuous cycle. 

We engineered a custom-made GUI, which provided a means of sending the start and 

stop commands to all devices simultaneously so that all data streams would be precisely 

aligned. We have used this GUI, as key to keeping the temporal alignment of EEG, EMG, and 

IMU data for later analysis and interpretation. Chapter 4 provides more details. 

5.2.2 Data Preprocessing 

Some preprocessing steps are essential to optimizing our ML model’s performance 

before feeding it data. 

o Average Filtering  

Noise or random fluctuations in real-world data often hide the real patterns, hence 

affecting the ability of ML to learn meaningful features. One such technique in eliminating 

noise from the data to reveal underlying trends is average filtering, also referred to as moving 

average filtering. It does this by determining the average of various specified data points 

within a sliding window moving across the whole data sequence. This averaging process helps 

to suppress the process of averaging over these random fluctuations and gives a clearer view 

of the core information in the data. 

o Normalization 

 Normalization scales the data to a specific range between 0 and 1. This ensures that 

all features in our dataset contribute equally to the training process. Larger-scale features could 

dominate the learning process without normalization, leading to suboptimal results. The ML 

model can effectively focus on learning the underlying relationships between all features by 

scaling everything to a similar range. 
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o Data Cleaning 

 One of the critical steps is data cleaning, which guarantees the quality and reliability 

of our analysis. Such a step involves the detection of errors, inconsistencies, or irrelevant data 

points within our dataset. Among the most critical cleaning tasks are those on missing values, 

which arise when data points were not recorded or collected, and on handling artifacts, which 

are spurious elements regarding the phenomenon under study. These views can result from 

technical errors or data collection or processing failures. Artifacts like these are removed after 

identification to ensure the accuracy and integrity of our data. 

By performing these preprocessing steps, we significantly improve our data quality 

and prepare it for effective feature extraction using our proposed model. 

 

5.3 Brief Overview of Basic Machine Learning Methods Used in Proposed Model   
 

5.3.1 Autoencoder Model 

The auto-encoders are neural networks designed for efficient learning in 

representations, usually for the purpose of reducing dimensionality or de-noising. Their main 

advantage in the extraction of features via auto-encoders is that students can learn nonlinear 

transformations by capturing the underlying structure of the data. This will be done through a 

two-part structure comprising an encoder and a decoder. 

The first network is called an encoder, which takes in input data and progressively 

compresses it through a lower dimensional representation known as the latent space. Such 

compression often happens via multiple slated artificial neurons. Every layer of this encoder 

transforms the data while it captures all the most essential features and passes on less 

important information. It does this by progressively reducing the dimensionality to capture a 

compressed version of the input data that contains the essential characteristics necessary for 

reconstruction. 

The decoder picks up where the encoder left off, performing the opposite operation. In 

most cases, it receives latent space representation and later tries to reconstruct this input. The 

architecture of this decoder usually mirrors the structure of the encoder but in reverse. It uses 

multiple layers of neurons to gradually increase the dimensionality of the data until it is fully 

restored. By comparing this reconstructed output with the initial input, an autoencoder learns 

and self-modifies the internal parameters for better accuracy of the latent space representation. 

Figure 5.1 demonstrates the architecture of the basic autoencoder. 
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Figure 5.1 Basic Autoencoder architecture, including encoder and decoder 

The encoder takes the input data 𝑥, and maps it to a latent representation, 𝑧, through a 

series of transformations. Mathematically, this can be expressed as: 

𝑧 = 𝑓𝑒𝑛𝑐𝑜𝑑𝑒𝑟(𝑥) (5-1) 

Where 𝑓𝑒𝑛𝑐𝑜𝑑𝑒𝑟 represents the encoding function, typically composed of linear 

transformations followed by non-linear activation functions. 

The decoder takes the latent representation 𝑧 and attempts to reconstruct the original 

input 𝑥̂: 

𝑥̂ = 𝑔𝑑𝑒𝑐𝑜𝑑𝑒𝑟(𝑧) (5-2) 

where 𝑔𝑑𝑒𝑐𝑜𝑑𝑒𝑟 represents the decoding function. 

Training: The autoencoder is trained to minimize the reconstruction error, which 

measures the difference between the input 𝑥 and the reconstructed output 𝑥̂. Common loss 

functions include mean squared error (MSE) and binary cross-entropy: 

𝐿(𝑥, 𝑥̂) = ‖𝑥 − 𝑥̂‖2 (5-3) 

The training process involves adjusting the weights of the encoder and decoder to 

minimize this loss. 

o Feature Extraction Using Autoencoders 

In feature extraction, the primary goal of using an autoencoder is to obtain a 

compressed representation 𝑧 that captures the most important features of the input data. This 

latent representation can be used for feeding our next step of our proposed model. 

o Advantages of Autoencoder-Based Feature Extraction 

Autoencoders offer several advantages over traditional methods of feature extraction 

from data. Most real-world datasets indicate complex relationships that are pretty hard to 

capture by linear methods like PCA. In contrast, autoencoders can learn nonlinear 

relationships in the data. This speeds up the process of compressing data into a lower-

dimensional representation while keeping central information required for procedures such as 
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classification or clustering. These nonlinearities are very well-captured by the autoencoder 

method, resulting in a more expressive and informative set of features for our model. 

Real-world data is often full of noise or irrelevant information. An autoencoder is 

readily trainable to act as a denoising filter. The training process puts pressure on the 

autoencoder to develop representations in which essential information is captured, and then it 

discards noise from the input data. During feature extraction, the autoencoder acts as a pre-

processing step that makes available cleaner and more robust features for our main model. 

5.3.2 Transformer Model 

The Transformer model, introduced by Vaswani et al. in their paper "Attention is All 

You Need" in 2017, has already made many changes in the area of natural language processing 

(NLP), becoming broadly applicable for many varied tasks with sequential data. Unlike 

traditional recurrent neural networks (RNNs) and long short-term memory networks 

(LSTMs), the Transformer relies entirely on attention mechanisms in its core of sequence 

handling and thus makes it parallelizable without pitfalls such as long-term dependences and 

vanishing gradients. 

o Transformer Architecture 

The Transformer architecture consists of an encoder and a decoder, each composed of 

a stack of identical layers. The encoder processes the input sequence and generates a set of 

continuous representations, while the decoder uses these representations to produce the output 

sequence, see Figure 5.2. 

 



 

47 

 

 

Figure 5.2 The main architecture of the Transformer model 

o Encoder 

The encoder transforms an input sequence into a sequence of continuous 

representations. Each encoder layer consists of two main components: multi-head self-

attention and a feed-forward neural network, with residual connections and layer 

normalization applied to both. The self-attention mechanism allows each position in the input 

sequence to attend to all other positions, providing context for each word. Scaled dot-product 

attention is the fundamental building block of the attention mechanism. For a given input 

sequence, it computes attention scores mathematically as follows: 

Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 (5-4) 

   - Computing the dot products of the query (𝑄) with all keys (𝐾). 
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   - Scaling the dot products by (√𝑑𝑘) (the dimension of the keys) to prevent the 

gradient from becoming too small for large (𝑑𝑘). 

   - Applying a softmax function to obtain attention weights. 

   - Multiplying the attention weights with the value vectors (𝑉) to get the final output. 

Instead of performing a single attention function, multi-head attention splits the 

queries, keys, and values into multiple heads, performs scaled dot-product attention in parallel, 

and concatenates the results. This allows the model to focus on different parts of the sequence 

simultaneously. So, mathematically: 

MultiHead(𝑄, 𝐾, 𝑉) = Concat(head1, head2, … , headℎ)𝑊𝑂 (5-5) 

 where each head is computed as: 

head𝑖 = Attention(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) (5-6) 

 

Each sub-layer is followed by a residual connection and layer normalization to 

stabilize training. This means that the input to the sub-layer is added to its output before 

normalization: 

Output = LayerNorm(𝑋 + SubLayer(𝑋)) (5-7) 

 

Each position in the sequence is passed through a fully connected feed-forward 

network independently and identically. This network consists of two linear transformations 

with a ReLU activation in between: 

FFN(𝑥) = max(0, 𝑥𝑊1 + 𝑏1) 𝑊2 + 𝑏2 (5-8) 

o Decoder 

The decoder generates the output sequence one token at a time, using the encoder's 

continuous representations and previously generated tokens. The decoder has several 

mechanisms. The multi-head self-attention mechanism is similar to the encoder's but with a 

mask applied to prevent attending to future tokens. This ensures that the prediction for each 

position depends only on known outputs. Also, multi-head attention over encoder's output 

allows the decoder to attend to all positions of the encoder's output, providing the necessary 

context for generating the next token in the sequence. Feed-forward neural network is identical 

to the one used in the encoder, it is applied to each position independently. Residual connection 

and layer normalization are as in the encoder, each sub-layer in the decoder is followed by a 

residual connection and layer normalization. 
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o Attention Mechanism 

The attention mechanism is the core innovation of the Transformer, allowing the model 

to weigh the importance of different parts of the input sequence dynamically. 

• Queries, Keys, and Values 

The input sequence is linearly transformed into three matrices: (𝑄) (queries), (𝐾) 

(keys), and (𝑉) (values). 

• Scaled Dot-Product Attention 

For each position in the sequence, attention scores are computed by taking the dot 

product of the query with all keys, scaling by (√𝑑𝑘), applying the softmax function, and 

multiplying by the value vectors. 

o Positional Encoding 

Since the Transformer does not inherently capture sequence order, positional 

encodings are added to the input embeddings to provide information about the position of each 

token. Positional encodings are generated using sine and cosine functions of different 

frequencies: 

 

PE(𝑝𝑜𝑠, 2𝑖) = sin (
𝑝𝑜𝑠

100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙
) (5-9) 

 

PE(𝑝𝑜𝑠, 2𝑖 + 1) = cos (
𝑝𝑜𝑠

100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙
) (5-10) 

 

where (𝑝𝑜𝑠) is the position and (𝑖) is the dimension. 

 

The Transformer architecture has been game-changing in the field of NLP and beyond. 

One of the greatest strengths of Transformers is their parallelization ability. Unlike RNNs, 

which process data sequentially, there are no recurrent connections within Transformers. This 

feature enables the whole sequence to be processed in parallel, dramatically increasing the 

speed of training and inference. Compare this to a Transformer, which can process all the 

words together and dramatically reduces processing time. It makes the Transformer very 

suitable for large-scale NLP tasks where processing speed matters. 

It has the key strength of easily handling long-range dependencies in a single sequence. 

For this very capability, it leverages a mechanism called self-attention. While RNNs and 
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LSTMs have to bear the overhead of learning the behavior of relationships of distant words in 

a sequence, Transformers are capable of relating all positions to one another. It enables the 

model to understand how different words relate to one another, even if they are far apart in the 

sequence. This long-range relationship understanding capability empowers the transformers 

to maintain a deeper understanding of the context and meaning within a sequence. 

On top of this, the transformers model not only speed and long-term dependency but 

are highly scalable. Their architecture makes them scale well with an increased amount of data 

and computational resources. This puts the transformer in a special position with respect to 

large-scale NLP applications such as Machine Translation, which involves dealing with vast 

texts to develop effective models, and being deeply computational resource-hungry, will soon, 

with the ever-increasing computation at hand, kick off into more complex NLP tasks. 

Though developed originally for natural language processing, transformers have 

shown great promise in handling sequential data since they are very effective at catching long-

range dependencies and context. These traits make the transformer very appropriate to process 

EEG, EMG, and IMU data containing complex temporal sequences. 

Transformers use what is called self-attention, a mechanism that works in a self-

directed way to weigh the importance of parts of the input sequence. This allows the model to 

focus on relevant parts of the data, no matter their position in the sequence. In this respect, 

transformers in EEG data analysis could model these long-range dependencies between brain 

signals, which would provide a much more holistic view of brain activity and thus an enhanced 

ability to decode with higher accuracy the user's intent. Similarly, muscle activation patterns 

vary a lot over time in the case of EMG data. In this respect, transformers can handle these 

variations and provide better accuracy in muscle activity recognition. For IMU data, 

containing sequences of motion and orientation data, transformers can track these long-range 

dependencies to sustain more precise motion analysis and control. 

EEG signals themselves are highly dynamic and possess complex temporal patterns. 

Since transformers can attend to those most relevant parts in the sequence, they process these 

complicated patterns and thus better interpret brain states. In a similar vein, the timing and 

intensity of muscle contractions in the EMG data are very variable. With transformers that can 

process complex temporal sequences, they can easily and justly process the signal of the 

muscles. Similarly, IMU signals contain complex movement and rotation patterns. These 

sequences are effectively parsed by a transformer and enable an exact understanding of motion 

dynamics. There is an ease of contamination of noise in EEG signals that emanates from many 
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sources, which often causes considerable interference during data analysis. The transformer, 

being essentially a self-attention mechanism, selectively pays attention to the major part of 

the signal and thereby reduces the effect of noise on the results. EMG can also be contaminated 

with electrical noise or cross-talk between different muscles. The self-attention mechanism 

provides some inherent features that help isolate relevant signals from noise. Not to say that 

the IMU signals are completely immune to noise, most of those could originate from many 

environmental and sensor drift-related factors. Such properties, which emphasize key data 

points in the cases, increase their strength with respect to motion analysis. 

Traditional sequential models process the data one step at a time; this may be slow if 

the length of the sequences in question is large. In contrast to this, one of the main differences 

is that a Transformer processes the whole sequence in a single go. This shall gain an upper 

hand by getting faster computation, hence setting a foundation for real-time analysis in sensor 

data applicable to EEG, EMG, and IMU data processing. 

One of the main advantages of transformers is that they are highly scalable, and their 

performance improves as long as they are trained on large enough datasets. Intrinsic scalability 

is a critical virtue for the creation of robust models with good generalizability to different 

subjects or conditions, which is very important in EEG, EMG, and IMU data processing 

applications. Besides, integration inside the processing pipeline of EEG, EMG, and IMU data 

opens further perspectives toward prosthetic control by these developments. 

Transformers demonstrate exceptional ability in modeling long-range sensor 

dependencies and complex temporal patterns. Improved understanding translates into more 

accurate decoding, hence improved control of user intents. Prosthetic control will then be more 

accurate and responsive, letting users interact more naturally with the world. 

In reasoning, however, the conventional modes of processing cannot meet the real-

time demands, while with parallelization enshrined in Transformers, it is faster in analysis. 

This makes the control for prosthetics much smoother and responsive to user input, thereby 

significantly enhancing the user experience. 

5.3.3 Artificial Neural Network in Classification 

Artificial Neural Networks (ANNs) have become a cornerstone in machine learning, 

particularly excelling in classification tasks. Their ability to learn complex patterns and 

relationships from data makes them ideal for predictive analytics and classifications. 
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o Structure of an Artificial Neural Network 

An ANN is essentially a network of interconnected nodes or 'neurons' arranged in 

layers. These include the input layer, one or more hidden layers, and finally, the output layer, 

see Figure 5.3. Each neuron thus acts like a biological neuron and processes the signals and 

passes them on in the network. 

Initial data is fed into the input layer. Each neuron of this layer relates to an attribute 

or feature in the dataset. Hidden layers are between the input and output layers; they introduce 

nonlinearity into a network and nonlinearly transform inputs. Two important parameters, 

depth (number of layers) and width (number of neurons in each layer), have much to do with 

the learning ability of the network. The output layer is the last layer, which produces the result 

of classification. It mostly includes one neuron with a sigmoid activation function for binary 

classification. For multi-class classification, it contains several neurons with a softmax 

activation function to give probabilities for each class. 

 

 

Figure 5.3 The main architecture of Artificial Neural Network (ANN) 

o ANN Working Mechanism 

The working mechanism of an ANN in classification involves three main processes: 

forward propagation, loss calculation, and backpropagation. 
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• Forward Propagation 

1. Activation Function: Each neuron applies an activation function to its input to 

introduce nonlinearity, enabling the network to learn complex patterns. Common activation 

functions include ReLU (Rectified Linear Unit), sigmoid, and tanh. 

2. Weighted Sum: Each neuron computes a weighted sum of its inputs, adds a bias 

term, and applies the activation function: 

𝑧 = ∑ 𝑤𝑖𝑥𝑖

𝑖

+ 𝑏 (5-11) 

 

𝑎 = 𝜎(𝑧) (5-12) 

 

   where ( 𝑧 ) is the weighted sum,(𝑤𝑖) are the weights, (𝑥𝑖) are the inputs, ( 𝑏 ) is the 

bias, and ( σ) is the activation function. 

3. Layer-wise Processing: The output of each neuron in a layer becomes the input for 

neurons in the subsequent layer, propagating the signal forward through the network until the 

output layer. 

• Loss Calculation 

The loss function measures the difference between the predicted output and the actual 

target. Common loss functions for classification include cross-entropy loss for binary and 

multi-class classification: 

𝐿(𝑦, 𝑦̂) = −
1

𝑁
∑[𝑦𝑖 log(𝑦𝑖̂) + (1 − 𝑦𝑖) log(1 − 𝑦𝑖̂)]

𝑁

𝑖=1

 (5-13) 

 

where ( 𝑦 ) is the true label, (𝑦̂) is the predicted probability, and ( 𝑁 ) is the number of 

samples. 

• Backpropagation 

1. Gradient Descent: The network uses gradient descent to minimize the loss function. 

It calculates the gradient of the loss function with respect to each weight and bias by applying 

the chain rule of calculus backward through the network. 

2. Weight Update: Weights and biases are updated using the gradients to reduce the 

loss: 

𝑤 ← 𝑤 − 𝜂
𝜕𝐿

𝜕𝑤
 (5-14) 
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𝑏 ← 𝑏 − 𝜂
𝜕𝐿

𝜕𝑏
 (5-15) 

  

   where ( η) is the learning rate, controlling the step size in the optimization process. 

3. Epochs and Iterations: The process of forward propagation, loss calculation, and 

backpropagation is repeated over multiple epochs and iterations until the network converges 

to a minimal loss value. 

ANNs dominate the world of classification tasks, since their key feature of learning 

complex patterns and relationships between data elements makes them very efficient for 

numerous applications. 

What sets ANNs apart from much simpler statistical models is the ability to model 

nonlinear relationships between input data and the desired outputs. This is a result of nonlinear 

activation functions within a network's hidden layers. Nonlinear activation functions introduce 

nonlinearity into the network, so it can capture the more subtle patterns and interactions among 

inputs that have a chance of getting missed by linear models. 

Another of the main advantages of ANNs is that they are capable of learning relevant 

features from raw data with little intervention. On the other hand, ANNs learn such features 

inherently from the training data. This obviates the need to use predefined features and frees 

the network from finding the most relevant patterns for any given classification task. 

One of the main strengths is flexibility in the type and structure of data. Successful 

developed applications range from numeric analysis to image and text processing, which 

makes it very versatile and helpful in many other fields. For instance, one ANN classifies 

emails as spam or not according to its textual content, while another ANN classifies images 

of flowers based on their visual appearance under different types of flowers. 

One of the important viewpoints about classification models is to have the ability to 

generalize well on new and unseen data. A common pitfall here is overfitting, when the model 

learns the noise, that is, it memorizes specific details of the training data but fails on new data. 

In this regard, ANNs can inherently handle this type of problem by using regularization 

techniques either through dropout or L2 regularization. These techniques prevent the model 

from turning overly complex and focus on learning generalizable patterns that hold true for a 

broader range of data. ANNs offer omnipotent and versatile approaches toward classification 

tasks. They model complex relationships, learn features automatically, and handle very diverse 
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data types, generalizing well. Thus, ANNs are transforming various industries and shaping the 

future for data-driven decision-making. 

5.4 Proposed Model 

In this experiment, we consider the datasets obtained from three modalities: EEG, 

EMG, and IMU. Since all these modalities result in highly dimensional and complex datasets, 

it becomes very challenging to predict the hand grasping orientation. Figure 5.4 to Figure 5.10 

present examples of EEG and EMG signals, while  Figure 5.11 and  Figure 5.12 display IMU 

data signals recorded from participants, highlighting the complex nature of these signals 

during various tasks. 

 

 

Figure 5.4 Sample of EEG and EMG signals of pinch grasping 
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Figure 5.5 Sample of EEG and EMG signals of power grasping 

 

 

Figure 5.6 Sample of EEG and EMG signal of spherical grasping 
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Figure 5.7 Sample of EEG and EMG signals of lateral grasping 

 

 

Figure 5.8  Sample of EEG and EMG signals of cylindrical grasping 
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Figure 5.9 Sample of EEG and EMG signals of hook grasping 

 

 

Figure 5.10 Sample of EEG and EMG signals of precision grasping 
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Figure 5.11 Acceleration, angular velocity, and angle in IMU signals for pinch grasping 
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Figure 5.12 Acceleration, angular velocity, and angle in IMU signals for power grasping 

The effective control of a prosthetic hand is very important; thus, small mistakes in the 

prediction will change the performance. Therefore, correct feature extraction and 

classification of grasping actions are necessary, especially for those with similar grasping 

actions. 

These datasets are overly complex, hence requiring sophisticated methods of feature 

extraction. After deep research and evaluation of available machine learning models, we apply 

an autoencoder for feature extraction and reducing dimensionality. An autoencoder is capable 



 

61 

 

of capturing essential features in the data, hence reducing noise and preserving vital 

information. This step is very important in dealing with the large amount of data and making 

sure that only important features are considered in further analysis. 

In particular, for the sequence analysis part, which is the crucial component of our 

model, we found the Transformer model to be very effective. Provided with handling 

sequential data, the Transformer aids us in inferring meaningful insights from our datasets. 

Drawing from studies on temporal relations and patterns in data, the Transformer model 

enhances our understanding of the intrinsic mechanisms of grasping actions of various kinds. 

This is an important feature in realizing differentiation between subtle variations in similar 

grasping actions that improve prediction accuracy. 

In the final classification task, we used an ANN. ANNs are quite robust in general and 

do a good job of multi-class cases; hence, this will be appropriate for our purpose. An ANN 

makes predictions with an accuracy rate about hand grasping orientation based on these 

extracted and sequentially analyzed features. Its adaptability and learning ability ensure that 

it handles the complexities of our data to give us reliable results in classification. 

By integrating these three components, Autoencoder, Transformer, and ANN, we 

developed a composite model named AutoMerNet. In this regard, AutoMerNet incorporates 

the advantages of each individual model in developing a very strong predictor of hand 

grasping orientation. The integrated approach will ensure that we extract the data accurately, 

analyze it, and classify it to ensure enhanced control of prosthetic hands. 

The detailed architecture and implementation details of AutoMerNet will be elaborated 

in the following. 

5.4.1 Preparing the Data for Feeding Autoencoder 

We have collected approximately 15,000 EEG, EMG, and IMU data per participant 

for each task. Given an input matrix of those signals: 

𝑋 ∈ 𝑅𝟛𝟙×𝟙5𝟘𝟘𝟘 (5-16) 

 

where (𝑋) represents the EEG signals with 31 channels (rows) and 15000 time points 

(columns). 

 

We chunked and divided (𝑋) into six submatrices, each of dimensions (31 × 2500): 
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𝑋 = [𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6] (5-17) 

where each (𝑋𝑖 ∈ 𝑅𝟛𝟙×25𝟘𝟘). 

It is crucial to ensure sensor data quality before feeding it into an autoencoder for 

optimal training. Real-world sensor data is rarely pristine. It often contains noise and artifacts 

that can hinder the autoencoder's ability to learn meaningful features. Techniques like average 

filtering should be employed to remove high-frequency noise that does not hold relevant 

information for the task at hand. Filtering techniques can eliminate unnecessary noise, 

allowing the autoencoder to focus on the important information within the data.  

We applied average filtering to each submatrix (𝑋𝑖). Let's denote the filtered submatrix 

as (𝑋𝑖
filtered). The average filtering operation can be described as: 

𝑋𝑖
filtered =

1

𝑘
∑ 𝑋𝑖,𝑗

𝑘

𝑗=1

 (5-18) 

where (𝑘) is the size of the averaging window, and (𝑋𝑖,𝑗) represents the (𝑗) − 𝑡ℎ 

segment of(𝑋𝑖). 

The next preprocessing step involves normalization. Sensor data can be collected from 

various sources with different measurement scales. Normalization techniques address this by 

transforming the data into a common scale between 0 and 1. This creates a level playing field 

for all the features within the data, allowing the autoencoder to learn from them more 

effectively.  

 

5.4.2 Building the Autoencoder Architecture 

The effectiveness of an autoencoder hinges on its architecture, which dictates how the 

network processes and compresses sensor data. Two key aspects to consider are network layers 

and latent space dimensionality. The network itself is typically comprised of an encoder and 

a decoder. The encoder progressively condenses the data into a lower-dimensional 

representation, latent space. The decoder then attempts to recreate the original data from this 

compressed version. The number of layers in the encoder and decoder determines the 

network's complexity. While a deeper network with more layers can capture intricate features 

in rich sensor recordings, it also increases the risk of overfitting, where the model memorizes 

specific details from the training data that might not work well with new data. Overall view 

of preprocessing tasks and proposed model is demonstrated in Figure 5.13. 



 

63 

 

 

Figure 5.13 Overall view of preprocessing phase and proposed model with their tasks 

After the preprocessing phase, each filtered submatrix (𝑋𝑖
filtered) of dimension (31 ×

2500) is fed into the auto-encoder. The encoder compresses the input data to a lower-

dimensional latent representation: 

𝑍𝑖 = 𝑓encoder(𝑋𝑖
filtered) (5-19) 

 

where (𝑍𝑖 ∈ 𝑅𝟛𝟙×𝟝𝟙𝟚) represents the compressed latent vectors. The encoder function 

(𝑓encoder) can be represented as a neural network with weights(θ𝑒). 

 

The decoder reconstructs the input data from the latent vectors: 

𝑿𝑖
𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 = 𝑓decoder(𝑍𝑖) (5-20) 

 

where(𝑿𝑖
𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 ∈ 𝑅𝟛𝟙×25𝟘𝟘)is the reconstructed version of (Xi

filtered). The 

decoder function (𝑓decoder) can be represented as a neural network with weights (θ𝑑). 

5.4.3 Training the Autoencoder 

With the preprocessed data and a well-designed autoencoder architecture in place, we 

move on to the training stage. The network learns to compress and reconstruct sensor data 

effectively. The prepared data segments are fed into the autoencoder. The encoder processes 

this data, progressively compressing it into a lower-dimensional representation within the 

latent space. This compressed version captures the key features of the original data. The 

decoder then takes over, attempting to reconstruct the original data as accurately as possible 

using only the information contained in the latent space. Through this process of encoding and 
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decoding, the autoencoder learns the underlying structure and patterns present in the sensor 

recordings. Once the data is compressed into the latent space, the decoder takes over. The 

decoder's task is to reconstruct the original data as accurately as possible using only the 

information contained in the latent space representation. Through this process of encoding and 

decoding, the autoencoder learns the underlying structure and patterns present in the sensor 

recordings. To train the autoencoder effectively, a suitable loss function is essential. The loss 

function quantifies the difference between the original input data and its reconstruction. We 

used the Mean Squared Error (MSE) loss function for autoencoders. The reconstruction loss 

is calculated using MSE: 

𝐿 𝑀𝑆𝐸 =
1

𝑛
∑ |

𝑛

𝑖=1

𝑿𝑖
𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑

− 𝑿𝑖
𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑|2

2 (5-21) 

 

where (𝑛) is the number of submatrices. The MSE loss function measures the average 

squared difference between the original and reconstructed data points. By minimizing this 

error, the autoencoder learns to produce reconstructions that closely match the original inputs. 

During training, the autoencoder undergoes several iterations where it adjusts its 

internal parameters to minimize the MSE loss. This process involves the following steps: 

o Forward Pass: The input data is passed through the encoder, resulting in a 

compressed latent representation. This latent representation is then passed through 

the decoder to produce the reconstructed data. 

o Loss Calculation: The MSE loss is calculated by comparing the reconstructed data 

to the original input data. 

o Backward Pass: The gradients of the loss with respect to the autoencoder's 

parameters are computed using backpropagation. 

o Parameter Update: The autoencoder's parameters are updated using an 

optimization algorithm (such as gradient descent) to minimize the loss. 

Through these iterative steps, the autoencoder gradually learns to compress and 

reconstruct the sensor data more accurately. By the end of the training process, the autoencoder 

has captured the key features and patterns in the data, enabling it to perform effective data 

compression and reconstruction. 

Also, we should note, training a robust autoencoder requires a large and diverse dataset 

of sensor recordings. A large dataset provides the network with a broader range of examples, 

allowing it to learn generalizable features that can be applied effectively to unseen data. 
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5.4.4 Feature Extraction: Utilizing the Learned Representation 

After successful training, the autoencoder has learned to compress sensor data into its 

latent space representation. This is where the actual feature extraction takes place. The trained 

encoder plays a crucial role in feature extraction. We obtain their corresponding latent space 

representations by feeding new, unseen data segments into the encoder. These compressed 

representations capture the essential characteristics of the original data in a lower dimension. 

This allows us to efficiently represent the sensor data while retaining the key features relevant 

to our analysis. The latent space representation offers a significant advantage in terms of 

dimensionality. Compared to the original high-dimensional sensor data, the features extracted 

by the autoencoder are much more compact. 

Autoencoders are powerful tools for feature extraction from complex and noisy data 

such as EEG, EMG, and IMU signals. By learning compact, non-linear data representations, 

autoencoders can enhance the performance of machine learning models in various 

applications, including biomedical signal processing, prosthetic control, and human activity 

recognition. 

5.4.5 Advantage of Autoencoder for Feature Extraction of Proposed Model 

The model of AutoMerNet begins with a crucial component: the autoencoder. This 

powerful tool acts as a feature extraction expert tasked with uncovering the hidden gems 

within the data. It operates in two stages: 

o The Encoder: Compressing the data dimension. This phase is fed by data 

collected from EEG, EMG, and IMU sensors during hand-grasping tasks. The 

encoder compresses this high-dimensional data into a more manageable, 

lower-dimensional representation (latent space). This compression is achieved 

through a series of neural network layers, each applying a non-linear 

transformation to reduce the data's complexity progressively. The key here is 

to retain the most relevant features, the essential landmarks on the map, while 

discarding irrelevant details. 

o The Decoder: Reconstructing from the essentials. The decoder takes the 

compressed representation in the latent space and attempts to recreate the 

original, high-dimensional data. This process helps the model understand the 

key features the encoder captured, focusing on the critical elements. 
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There are two main reasons why autoencoders are a perfect fit for this task. The first 

reason is for dimensional reduction. Hand-grasping data is inherently complex, with many 

dimensions. By compressing this data, the autoencoder makes it easier for subsequent model 

parts to handle and analyze. Another reason is feature retention. The autoencoder focuses on 

the most relevant features within the data through the compression and reconstruction process. 

This refined data, rich in essential information, allows the model to learn more meaningful 

patterns, ultimately leading to more accurate predictions about hand-grasping orientations.  

5.4.6 Transformer for Sequence Modeling 

Unlike the autoencoder, which focuses on individual features, the transformer excels 

at understanding the flow and relationships within these features over time. At the heart of the 

transformer lies the ingenious self-attention mechanism. The self-attention mechanism 

calculates scores for each data point, indicating how much focus each element deserves when 

making predictions. This allows the transformer to capture temporal dependencies, 

understanding how past positions and orientations influence the current state of the hand 

movement. Furthermore, transformers can analyze multiple parts of the sequence 

simultaneously. This is like the conductor being able to pay attention to different sections of 

the orchestra at once. This ability to grasp sequence relationships allows the transformer to 

capture complex interactions within the data. Perhaps the initial hand position influences how 

the muscles activate later in the movement, or vice versa. By considering these intricate 

relationships, the transformer builds a more comprehensive understanding of the hand-

grasping dynamics, leading to more accurate predictions. 

Autoencoders provide a refined data picture, but hand movements are inherently 

dynamic. This is where the transformer steps in as a master of sequence modeling. Once the 

input data is encoded into the latent space, each row vector in (𝑍𝑖)  is treated as an embedding 

vector: 

𝐸𝑖 = [𝑒𝑖,1, 𝑒𝑖,2, … , 𝑒𝑖,31] (5-22) 

 

where each (𝑒𝑖,𝑗 ∈ 𝑅𝟝𝟙𝟚) represents the embedding of the (𝑗) − 𝑡ℎ channel. These 

vectors capture the compressed and salient features of the original data. 

To process these embedding vectors further, we use a Transformer Encoder. The 

transformer encoder is adept at capturing complex dependencies and relationships within the 

data through mechanisms of self-attention and feed-forward neural networks. 
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The transformer encoder processes the embedding vectors with multiple heads. In this 

case, we use 8 heads, which allows the model to focus on different parts of the input 

simultaneously, enhancing its ability to capture diverse aspects of the data. 

The transformation applied by the transformer encoder can be represented as: 

𝑇𝑖 = TransformerEncoder(𝐸𝑖) (5-23) 

The transformer encoder consists of multiple layers, each containing self-attention and 

feed-forward neural networks. The output of the transformer encoder 𝑇𝑖 can be broken down 

into its key components for better understanding: 

1. Multi-Head Attention: Multi-head attention allows the model to jointly attend to 

information from different representation subspaces. Each head operates on the input 

embeddings and learns to focus on different parts of the sequence. The combined 

output from all heads provides a richer and more nuanced representation. 

 

MultiHead(𝑄, 𝐾, 𝑉) = Concat(head1, head2, … , head8)𝑊𝑂 (5-24) 

where each head is computed as: 

head𝑖 = Attention(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) (5-25) 

 

with 𝑄, 𝐾, 𝑎𝑛𝑑 𝑉 being the query, key, and value matrices derived from the input 

embeddings 𝐸𝑖. 

2. Feed-Forward Neural Network: Following the multi-head attention, the transformer 

encoder applies a position-wise feed-forward neural network to each embedding 

vector independently. This network consists of two linear transformations with a ReLU 

activation in between, allowing for additional non-linearity and complexity in the 

representation. 

FeedForward(Ei)=ReLU(Ei⋅W1+b1)⋅W2+b2 (5-26) 

For simplicity, the overall output of the transformer encoder can be represented as the 

sum of the contributions from the multi-head attention mechanism and the feed-forward 

network: 

𝑇𝑖 = MultiHeadAttention(𝐸𝑖) + FeedForward(𝐸𝑖) (5-27) 

 

This combination ensures that the transformer encoder captures both the intricate 

dependencies within the embeddings through attention mechanisms and the enhanced feature 

representations through feed-forward networks. 
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The transformer encoder consists of multiple layers of self-attention and feed-forward 

neural networks. For simplicity, the output of the transformer encoder can be represented as: 

𝑇𝑖 = MultiHeadAttention(𝐸𝑖) + FeedForward(𝐸𝑖) 
 

(5-28) 

5.4.7 The Artificial Neural Network for Final Classification and Prediction 

ANNs offer two key advantages. First, they are flexible. They excel at modeling 

complex, non-linear relationships within data, making them suitable for various tasks. Second, 

they integrate features. By receiving both the extracted features from the autoencoder and the 

sequential information processed by the transformer, the ANN can consider a more 

comprehensive picture when making its final prediction. This integrated approach allows the 

ANN to leverage the strengths of both components: the autoencoder's ability to capture 

essential features and the transformer's understanding of temporal dynamics.  

The ANN leverages the processed information to make the final call on hand-grasping 

orientation. The input layer receives the combined features extracted by the transformer. In 

other words, the output of the transformer encoder is passed through a fully connected (FC) 

layer: 

𝐹𝑖 = FC(𝑇𝑖) (5-29) 

 

where (𝐹𝑖 ∈ 𝑅𝟛𝟙×𝟙𝟚𝟠). 

 

The output of the FC layer is then passed through another FC layer with seven neurons 

(number of hand grasping classes), followed by a Softmax activation: 

𝑦𝑖 = Softmax(FC(𝐹𝑖)) (5-30) 

 

where (𝑦𝑖 ∈ 𝑅𝟟) represents the probability distribution over seven classes. 

 

During training, the classification loss is calculated using Cross-Entropy Loss: 

𝐿 𝐶𝑟𝑜𝑠𝑠 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑦𝑖,𝑐

7

𝑐=1

log(𝑦𝑖,𝑐̂) (5-31) 

 

where (𝑦𝑖,𝑐) is the true label and (𝑦𝑖,𝑐̂) is the predicted probability for class (𝑐). 
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The total loss function is a combination of the auto-encoder loss and the ANN 

classification loss: 

𝐿 = 𝐿 𝑀𝑆𝐸 + λ 𝐿 𝐶𝑟𝑜𝑠𝑠 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 
 

(5-32) 

where (λ) is a weighting factor that balances the contributions of the auto-encoder and 

classification losses. The overall training objective is to minimize this total loss function by 

optimizing the parameters of the auto-encoder, transformer encoder, and classification layers. 

5.5 Results 

Integrating AI and ML in controlling prosthetic hands offers significant advancements 

in creating responsive and adaptive prosthetic devices. Our methodology involved meticulous 

data collection, preprocessing, and the development of a sophisticated model, AutoMerNet, 

that combines autoencoders, transformers, and ANNs. AutoMerNet achieved outstanding 

performance, with all evaluation metrics, including accuracy and F1 score, reaching 99.99%. 

This high level of accuracy demonstrates the model's effectiveness in predicting and 

classifying hand-grasping tasks based on the integrated EEG, EMG, and IMU data. The 

exceptional performance of AutoMerNet underscores the potential of AI and ML in enhancing 

the functionality and user experience of prosthetic hands, ultimately contributing to improved 

quality of life for users. Figure 5.14 presents the confusion matrix of AutoMerNet, 

demonstrating its ability to distinguish different hand grasps and make accurate predictions. 

Training and testing Loss and accuracy of AutoMerNet are shown in  Figure 5.15 To Figure 

5.17.  
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Figure 5.14 Confusion matrix of AutoMerNet 

 

Figure 5.15 Training loss of AutoMerNet 
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Figure 5.16 Testing loss of AutoMerNet 

 

Figure 5.17 Test accuracy of AutoMerNet 
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5.5.1 Evaluation Metrics 

To rigorously assess the performance of the AutoMerNet model, we employed four 

critical evaluation metrics: Accuracy, F1 Score, Precision, and Recall. Each of these metrics 

provides unique insights into different aspects of the model's predictive capabilities, ensuring 

a comprehensive evaluation of its performance. 

Accuracy is defined as the proportion of correctly predicted instances out of the total 

instances. It provides a straightforward measure of the model's overall performance by 

indicating the percentage of all predictions that are correct. The accuracy can be calculated as 

follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (5-33) 

 

Precision is the ratio of true positive predictions to the total predicted positives. This 

metric indicates the model's ability to avoid false positives, providing insight into the accuracy 

of positive predictions. High precision is crucial in scenarios where the cost of false positives 

is significant, ensuring that the instances classified as positive are indeed positive. The 

precision can be calculated as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (5-34) 

 

Recall, also known as sensitivity, is the ratio of true positive predictions to the total 

actual positives. This metric measures the model's ability to identify all relevant instances 

within the dataset. High recall is essential in applications where missing a positive instance 

could have severe consequences, reflecting the model's effectiveness in capturing all true 

positives. The recall can be calculated as follows: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (5-35) 

 

The F1 Score is the harmonic mean of precision and recall, offering a balanced 

measure that considers both false positives and false negatives. This metric is particularly 

valuable when dealing with imbalanced datasets, as it ensures that both precision (the ability 

to avoid false positives) and recall (the ability to capture all relevant instances) are given equal 

importance. By combining these two aspects, the F1 Score provides a more nuanced 

evaluation of the model's effectiveness, and can be calculated follows: 
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𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 
(5-36) 

By utilizing these four evaluation metrics, we ensured a comprehensive assessment of 

the AutoMerNet model's performance. Each metric provides valuable insights into different 

aspects of the model's predictive capabilities, enabling us to evaluate its accuracy, balance 

between precision and recall, and its ability to correctly identify both positive and negative 

instances. This thorough evaluation approach ensures that the model is robust, reliable, and 

capable of generalizing well to new data. The value of these four metrics is in Figure 5.18. 

 

 

Figure 5.18 Four evaluation metrics and their values for AutoMerNet
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5.6 AutoMerNet's Robustness and High Accuracy  

One of the key factors behind AutoMerNet's success is its innovative architecture, see 

Figure 5.19. One of the key factors behind AutoMerNet's success is its innovative architecture, 

which is both unique and highly effective. It achieves an impressive accuracy of 99.99% in 

predicting hand-grasping orientations. Accuracy, as discussed before, is a common metric for 

evaluating the performance of an ML model. It measures the proportion of correct predictions 

out of the total number of predictions using the following formula which is equal to formula 5-

33: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
 (5-37) 

 

An ML model determines correct predictions by comparing its predictions to the true 

labels (ground truth) through these steps: making predictions, comparing them to the true 

labels, and counting the matches. 

Achievement of 99.99% accuracy for the proposed model highlights its ability to 

accurately predict hand movements by deciphering the complex relationship between brain 

signals, muscle activity, and sensor data. 

 

 

Figure 5.19 AutoMerNet architecture as a combination of Autoencoder, Transformer, and ANN 

AutoMerNet's architecture consists of three key components working together. The first 

component is an autoencoder, which extracts the most relevant features from the EEG, EMG, 

and IMU data. This ensures that only the most important information is included in the analysis. 

The second component is a transformer. This component is particularly adept at capturing 

temporal dependencies within data sequences. This ability is crucial in hand-grasping 

prediction because it allows the model to understand the flow of information within the data, 

which is essential for grasping the dynamic nature of hand movements. The third component 

is an artificial neural network (ANN). This ANN takes the extracted features and the sequential 

Chunked Data Autoencoder Transformer ANN Output 
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information captured by the transformer and integrates them to make informed and highly 

accurate predictions about hand-grasping orientations. 

The true power of AutoMerNet lies in the strategic way these three components are 

combined. Each component tackles a specific aspect of the data, and by working together, they 

achieve a level of accuracy and understanding that would be difficult for any single model to 

achieve on its own. This combined approach paves the way for significant advancements in 

prosthetic control and human-computer interaction. In essence, combining these components 

in the AutoMerNet architecture allows for a comprehensive and robust approach to predicting 

hand-grasping orientation. By leveraging the strengths of each model, AutoMerNet can 

effectively handle the complexities of multimodal sensor data. 

5.7  Training and Validation 

The AutoMerNet model prioritized achieving robustness and generalizability in 

predicting hand-grasping orientation. This was accomplished through a meticulously designed 

training and validation pipeline. The model was trained on a curated multimodal sensor data 

repository. This dataset encompassed various modalities, including EEG, EMG, and IMU data. 

Stringent preprocessing techniques were applied to each data point within the repository to 

ensure data quality and consistency. 

To rigorously assess the model's performance and mitigate potential biases, a k-fold 

cross-validation strategy was implemented (k=10). This statistically robust method involves 

splitting the original dataset into k non-overlapping folds. In each iteration, the model is trained 

on a combination of (k-1) folds, while the remaining fold is reserved for validation. This 

process is repeated k times, with each fold being the validation set once. The selection of k 

folds is crucial, with considerations often leaning towards larger values of k = 10 to achieve a 

more comprehensive evaluation. 

This k-fold cross-validation approach offers several advantages. First, it enhances 

robustness by training and validating the model on diverse data subsets; k-fold cross-validation 

provides valuable insights into the model's generalizability to independent datasets. This 

ensures the model is not overly reliant on idiosyncrasies present within a specific portion of 

the training data. Second, it reduces overfitting risk. The repeated training and validation cycles 

serve as a safeguard against overfitting. Overfitting occurs when a model performs 

exceptionally well on the training data but poorly on unseen data. K-fold cross-validation 

mitigates this risk by exposing the model to a broader range of data during training, promoting 
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generalizability. The third is its comprehensive performance evaluation. K-fold cross-

validation provides a more robust estimate of the model's performance by averaging the 

evaluation metrics across all folds. This comprehensive assessment reduces the variance 

associated with a single training-validation split, leading to a more reliable characterization of 

the model's predictive capabilities. 

Through this rigorous training and validation process with k-fold cross-validation, the 

researchers were able to thoroughly validate the AutoMerNet model's ability to predict hand-

grasping orientation with high reliability and generalizability to unseen data. 
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CHAPTER 6 

 

6 DISCUSSION: AUTOMERNET AND THE FUTURE OF PROSTHETIC HAND 

6.1 Introduction 

This work presents a groundbreaking contribution to the field of prosthetic hand control 

through the development of AutoMerNet, a novel model that leverages the power of AI and 

ML to achieve exceptional performance in prediction hand orientation grasping. By integrating 

state-of-the-art techniques from these rapidly evolving fields, AutoMerNet addresses some of 

the most pressing challenges in prosthetic hand control, offering a sophisticated solution that 

enhances both precision and usability. Beyond the immediate technical achievements, this work 

explores the far-reaching implications for the future of prosthetic technology, considering how 

such advancements can transform users' lives, improve the customization and adaptability of 

prosthetic devices, and pave the way for new research directions and innovations in AI-driven 

assistive technologies. By setting a new benchmark in the field, AutoMerNet not only 

demonstrates the potential of AI and ML in enhancing prosthetic hand control but also 

underscores the importance of multidisciplinary approaches in tackling complex biomedical 

challenges. 

6.2 Strengths of the Methodology 

AutoMerNet's core strength lies in its groundbreaking utilization of multimodal sensor 

data. By incorporating EEG (brain activity), EMG (muscle activity), and IMU (motion data), 

the model gains a comprehensive and nuanced understanding of the user's intent, setting it apart 

from other works. This new combined approach offers several advantages compared to 

traditional methods relying on a single data source, which can be susceptible to limitations or 

noise. 

EEG signals provide valuable insights into the user's brain activity associated with 

movement planning. The primary advantage of using EEG data is that it can capture the user's 

intent before the actual movement occurs, offering a predictive edge.  
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EMG signals measure the electrical activity of skeletal muscles. This data is crucial for 

understanding the activation of specific muscle groups during hand movements. EMG data is 

highly valuable for its precision in reflecting muscle contractions and is less prone to external 

noise compared to EEG.  

IMU sensors provide critical motion data, including acceleration and angular velocity. 

IMU data captures the physical execution of movements, offering detailed information about 

the motion dynamics. This robust data provides valuable context to the movement captured by 

EMG, making it a vital component for understanding the complete motion sequence. 

The success of AutoMerNet hinges on its innovative architecture, which combines three 

powerful components. The autoencoder efficiently extracts the most relevant features from the 

raw sensor data. This process is akin to data compression, focusing the model's learning process 

on the information most crucial for predicting grasping tasks. By filtering out noise and 

redundant information, the autoencoder ensures that only the most significant features are used 

for further processing. This feature extraction is crucial for handling the high dimensionality 

of the multimodal data, making the model more efficient and accurate. Essentially, the 

autoencoder acts as a dimensionality reduction tool, transforming the complex, high-

dimensional sensor data into a more manageable and informative representation for the 

subsequent processing stages. 

The transformer architecture captures the sequential nature of hand movements, where 

the order of muscle activations and sensor readings is critical. Unlike traditional models that 

struggle to capture these dependencies, the transformer can identify relationships between 

different data points within the sequence. This allows AutoMerNet to understand the dynamic 

evolution of the user's intended movement. This capability is particularly important for tasks 

that involve complex, time-dependent sequences of actions, such as grasping objects with 

different shapes and orientations. The transformer architecture addresses a key challenge in 

traditional sequence modeling by effectively modeling temporal dependencies and interactions 

within the data. This enhances the model's ability to predict accurate and context-aware 

movements. By incorporating the transformer, AutoMerNet can decipher the order and timing 

of muscle activations and sensor readings, leading to more precise and natural control of the 

prosthetic hand. 

The ANN acts as the final classifier, integrating the processed data from the autoencoder 

and the sequential patterns identified by the transformer to predict the most likely grasping 

orientation for the prosthetic hand. The ANN synthesizes the rich, processed information from 
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the previous stages and makes final predictions about the user's intended grasp. Its flexible 

architecture allows it to learn intricate patterns and decision boundaries necessary for accurate 

classification. The ANN component ensures that the final predictions are robust and reliable, 

drawing on the comprehensive understanding built by the preceding components. It culminates 

the entire architecture, translating the extracted features and sequential patterns into concrete 

actions for the prosthetic hand. 

6.3 Implications for Prosthetic Technology 

Integrating multimodal data and sophisticated model architecture in AutoMerNet has 

several far-reaching implications for the future of prosthetic technology. 

Enhanced Control and Precision: This improvement in control precision translates to a 

more natural and intuitive user experience. Users can interact with objects in a more fluid and 

controlled manner, mimicking the dexterity and ease of movement of a biological hand. This 

can significantly improve the user's ability to perform everyday tasks and activities, fostering 

greater independence and a higher quality of life. 

Reduced Cognitive Load: The current generation of prosthetic limbs often requires a 

high degree of cognitive focus to operate effectively. AutoMerNet's ability to predict user intent 

through EEG data can alleviate this cognitive burden. By reducing the need for constant 

conscious control, users can expend less mental effort on controlling the prosthetic and more 

on the task at hand. 

Improved Brain-Computer Interface (BCI): AutoMerNet represents a significant 

advancement in BCI technology. The ability to decode complex movement intentions from 

brain signals paves the way for more intuitive and natural control of prosthetic devices in the 

future. This progress can extend beyond prosthetic limbs to other BCI applications, such as 

assistive technologies for individuals with neurological conditions. 

Personalized Prosthetic Control: AutoMerNet's architecture allows for personalization 

by training the model on individual user data. This can account for variations in anatomy, 

physiology, and movement patterns across users. By tailoring the model to each user's specific 

needs, prosthetic control can become more intuitive and comfortable, further enhancing user 

satisfaction and functionality. 

Continuous Learning and Adaptation: A key advantage of machine learning models is 

their ability to learn and adapt over time [64]. AutoMerNet can continuously improve its 
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performance as it is exposed to more user data. This continuous learning can address individual 

user variability and improve the model's generalizability to different users and scenarios. 

Fusion with Sensory Feedback: Research is ongoing on integrating sensory feedback 

mechanisms into prosthetic limbs [65]. Future advancements in sensory feedback, coupled with 

AutoMerNet's control capabilities, hold immense promise for creating truly biomimetic 

prosthetic hands that offer a more natural and complete user experience. 

AutoMerNet represents a transformative development in prosthetic hand control. This model 

paves the way for a future of more intuitive, precise, and user-centric prosthetic technology by 

harnessing the power of multimodal data and innovative machine-learning architectures. The 

implications of AutoMerNet extend beyond prosthetic limbs, potentially impacting BCI 

development and other assistive technologies. As research continues in this field, we can expect 

even more remarkable advancements to further enhance the lives of individuals relying on 

prosthetic devices. 

6.4 A Comparison of Machine Learning Approaches for Hand Grasping Prediction 

Several research works explore the use of machine learning for hand-grasping 

prediction. One approach focuses on the robotic grasping of novel objects. This work utilizes 

a deep learning model called ML-CNN to analyze an object's depth image and the robot's palm 

pose [66]. While the exact success rate isn't explicitly stated, it aims for the robot to grasp new 

objects successfully.  

Another work takes a different approach focused on human-robot collaboration [67]. It 

uses a deep neural network to analyze an RGB image containing human hand key points. The 

goal here is to recognize the type of object a human is grasping based on their hand posture, 

not predict robotic grasping configurations.  

Similarly, other works explore predicting hand pose but for prosthetic control [68]. This 

work utilizes a Motion Prior Field model to analyze hand pose trajectory and predict a suitable 

pre-grasp hand configuration.  

Other research evaluates the effectiveness of seven commonly used metrics in real-

world settings by generating and testing synthetic grasp candidates on two robotic systems 

[69]. Experimental results show that while individual metrics have limitations, combinations 

of metrics can achieve up to 85% accuracy in predicting real-world grasp success. This 

highlights the potential for using multiple grasp quality metrics to improve robotic grasp 

planning and execution.  



 

81 

 

By comparing these approaches and considering how success is measured, we gain a 

better understanding of how the AutoMerNet model surpassed other models with a high 

accuracy of 99.99% in hand-grasping prediction using combination Machine Learning. Table 

6.1 is a brief comparison of recent works on prediction hand grasping with AutoMerNet. 

 

Table 6.1 Some recent works were compared with AutoMerNet 

 

Work Input Data Model Accuracy Focus 

Deep Learning Method 

for Grasping Novel 

Objects Using 

Dexterous Hands [70] 

Object Depth 

Image, Palm 

Pose 

Multi-Level 

Convolutional 

Neural Network 

(ML-CNN) 

Not 

explicitly 

stated 

Grasping novel 

objects with 

dexterous robotic 

hands 

Recognition of 

Grasping Patterns 

Using Deep Learning 

for Human-Robot 

Collaboration [71] 

RGB Image 

(Hand 

Keypoints) 

Deep Neural 

Network (CNN or 

Transformer) 

Up to 92.5% Recognizing 

grasped object 

type based on 

human hand 

posture 

Predicting grasp 

success in the real 

world [72]  

Quality 

Metrics as 

QM 

Binary 

Classification 

Model 

85% Success 

Rate 

(simulated) 

Learning grasping 

strategies through 

trial and error in 

simulation 

Predicting Hand 

Orientation Grasping 

EEG, EMG, 

IMU 

AutoMerNet (Our 

proposed model) 

99.99% Recognizing 

Orientation 

Grasping while 

Doing 7 Main 

Grasping 
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CHAPTER 7 

 

7 FUTURE DIRECTIONS AND CONCLUSION 

7.1 Future Work 

AutoMerNet has demonstrated remarkable performance in predicting hand-grasping 

orientation. However, several promising works for future research and development could 

further advance this technology. These advancements have the potential to significantly 

enhance the practical applications of AutoMerNet, making it even more effective and user-

friendly for individuals relying on prosthetic hands. 

Achieving real-time implementation of AutoMerNet is a key area for future research. 

This involves integrating AutoMerNet into a system capable of predicting and controlling 

prosthetic hands in real time. To accomplish this, optimizing the model for lower latency is 

crucial. The system must process incoming sensor data and generate control signals swiftly to 

ensure a seamless and intuitive user experience. Techniques such as model compression, 

efficient design, and hardware acceleration may be explored to reduce computational overhead 

and enhance real-time performance. Real-time implementation can improve the responsiveness 

of prosthetic hands and increase their practicality in everyday use, providing users with a more 

natural and immediate control experience. 

Expanding the dataset used to train AutoMerNet is essential for improving its 

generalizability. The current model might be limited by the diversity of the training data, which 

we had 13 participants. Researchers can ensure that AutoMerNet can handle a wider range of 

scenarios and user needs by collecting data from a larger and more diverse population of 

prosthetic users. This includes considering variations in demographics, different levels of 

amputation, and various types of prosthetic devices. A more extensive and varied dataset will 

enable the model to learn from a broader spectrum of user experiences, enhancing its robustness 

and applicability. By including a wider variety of data, researchers can improve the model's 

ability to generalize to new users and unanticipated situations, making it more versatile and 

effective in real-world applications. 
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Incorporating additional sensor data modalities, such as tactile feedback, could 

significantly enhance AutoMerNet's predictive power. Tactile sensors can provide valuable 

information about the interaction between the prosthetic hand and the objects it grasps, offering 

insights into pressure, texture, and contact dynamics. This additional data can improve the 

accuracy of grasp and manipulation tasks, enabling more precise and adaptive control of the 

prosthetic hand. Exploring multimodal data fusion techniques will be critical to effectively 

integrating these new data sources. By combining tactile feedback with existing EEG, EMG, 

and IMU data, AutoMerNet can create a more comprehensive understanding of the user's 

intentions and the physical interactions involved, leading to more nuanced and effective control 

strategies. 

Adopting a user-centered design approach is vital for the continued development of 

AutoMerNet. We should work closely with prosthetic users to refine both the AutoMerNet 

model and the control interface. This collaborative approach ensures that the final system meets 

the specific needs and preferences of users. Conducting user studies and employing iterative 

design processes are essential for gathering feedback and making necessary adjustments to 

improve usability and overall satisfaction. Customizing the system to individual users' 

requirements will enhance the practical utility and acceptance of the technology. By involving 

users in the design process, researchers can ensure that the system is functionally effective, 

user-friendly, and tailored to the everyday needs of prosthetic users. 

Exploring the integration of AutoMerNet with cutting-edge prosthetic technologies, 

such as bionic limbs and neuroprosthetics, represents a promising direction for future research. 

These advanced technologies offer enhanced functionality and user control, and combining 

them with AutoMerNet's sophisticated predictive capabilities can further improve the overall 

performance of prosthetic devices. Investigating how AutoMerNet can complement and 

enhance these technologies will be critical for developing next-generation prosthetic solutions. 

By integrating AutoMerNet with state-of-the-art prosthetic technologies, researchers can push 

the boundaries of what is possible, creating more advanced, responsive, and intuitive prosthetic 

systems that significantly improve the quality of life for users. 

7.2 Conclusion 

This study presented a comprehensive methodology for predicting hand grasping 

orientation using multimodal sensor data and an advanced machine learning model, 

AutoMerNet. The exceptional accuracy achieved by AutoMerNet underscores the potential of 
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combining autoencoders, transformers, and artificial neural networks for this application. By 

effectively integrating EEG, EMG, and IMU data, the model provides a nuanced understanding 

of user intent and movement, setting a new benchmark in prosthetic hand control. 

Our findings contribute to the growing body of research aimed at improving prosthetic 

hand control, offering new possibilities for enhancing the independence and quality of life of 

prosthetic users. AutoMerNet's innovative approach demonstrates how leveraging multimodal 

data and advanced AI architectures can overcome the limitations of traditional methods, 

providing a more robust and intuitive control system for prosthetic hands. Using autoencoders 

for feature extraction, transformers for sequential data modeling, and artificial neural networks 

for classification ensures a comprehensive analysis of the complex signals involved in hand 

movements. 

In conclusion, AutoMerNet represents a significant advancement in the field of 

prosthetic hand control, showcasing the potential of AI and ML in developing intelligent 

assistive technologies. The future work outlined will not only enhance the current capabilities 

of AutoMerNet but also pave the way for further innovations in prosthetic technology, 

ultimately leading to more effective and user-friendly solutions for individuals relying on these 

devices. Integrating real-time processing, expanded datasets, additional sensor modalities, and 

advanced prosthetic technologies will continue to drive progress in this field, offering hope for 

more sophisticated and adaptive prosthetic systems. This study highlights the importance of a 

multidisciplinary approach, combining insights from neuroscience, engineering, and computer 

science to create transformative solutions for prosthetic users.  
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