Committee Chair
Anderson, W. Kyle
Committee Member
Kapadia, Sagar; Wang, Li; Sreenivas, Kidambi
College
College of Engineering and Computer Science
Publisher
University of Tennessee at Chattanooga
Place of Publication
Chattanooga (Tenn.)
Abstract
In this research a stabilized finite element approach is utilized in the development of a high-order flow solver for compressible turbulent flows. The Reynolds averaged Navier-Stokes (RANS) equations and modified Spalart-Almaras (SA) turbulence model are discretized using the streamline/upwind Petrov-Galerkin (SUPG) scheme. A fully implicit methodology is used to obtain steady state solutions or to drive unsteady problems at each time step. Order of accuracy is assessed for inviscid and viscous flows in two and three dimensions via the method of manufactured solutions. Proper treatment of curved surface geometries is of vital importance in high-order methods, especially when high aspect ratio elements are used in viscous flow regions. In two dimensions, analytic surface representations are used to ensure proper surface point placement, and an algebraic mesh smoothing procedure is applied to prevent invalid elements in high aspect ratio meshes. In dealing with complex three-dimensional geometries, high-order curved surfaces are generated via a Computational Analysis PRogramming Interface (CAPRI), while the interior meshes are deformed through a linear elasticity solver. In addition, the effects of curved elements on solution accuracy are evaluated. Finally, several test cases in two and three dimensions are presented and compared with benchmark results and/or experimental data.
Degree
Ph. D.; A dissertation submitted to the faculty of the University of Tennessee at Chattanooga in partial fulfillment of the requirements of the degree of Doctor of Philosophy.
Date
12-2013
Subject
Navier-Stokes equations
Discipline
Applied Mathematics | Computational Engineering
Document Type
Doctoral dissertations
DCMI Type
Text
Extent
xii, 95 leaves
Language
English
Rights
https://rightsstatements.org/page/InC/1.0/?language=en
License
http://creativecommons.org/licenses/by-nc-nd/3.0/
Recommended Citation
Erwin, Jon Taylor, "Stabilized finite elements for compressible turbulent Navier-Stokes" (2013). Masters Theses and Doctoral Dissertations.
https://scholar.utc.edu/theses/94
Department
Dept. of Computational Engineering