Committee Chair

Hilbert, C. Bruce

Committee Member

Karman, Steve L., Jr.; Sreenivas, Kidambi; Webster, Robert

Department

Dept. of Computational Engineering

College

College of Engineering and Computer Science

Publisher

University of Tennessee at Chattanooga

Place of Publication

Chattanooga (Tenn.)

Abstract

Two algorithms are presented which together generate well-spaced point distributions applied to curves, surfaces, and the volume of a computational domain. The first is a force equilibrium simulation which applies a simplified direct solution of the equations of motion at each node. Inter-nodal pair forces are computed based on the desired spacing between nodes and summed to provide a net force on each node. The nodes are allowed to travel a restricted distance with each locally distinct time step. The motion of the point distribution is stabilized by applying friction to each node from its neighboring nodes as well as globally restricting the time step size over the series of iterations. Second, an algorithm for node population adaptation is presented which deletes nodes or inserts new nodes depending on how well the local concentration of nodes matches a desired local spacing prescription, or spacing field. Experimental results are provided which demonstrate the ability of these algorithms to generate smooth distributions of points matching various spacing field function definitions.

Degree

Ph. D.; A dissertation submitted to the faculty of the University of Tennessee at Chattanooga in partial fulfillment of the requirements of the degree of Doctor of Philosophy.

Date

12-2017

Subject

Numerical analysis; Differential equations -- Numerical solutions

Document Type

Doctoral dissertations

Extent

xviii, 124 leaves

Language

English

Rights

Under copyright.

License

http://creativecommons.org/licenses/by-nc-nd/3.0/

Share

COinS