Committee Chair
Kandah, Farah
Committee Member
Skjellum, Anthony; Tanis, Craig; Ward, Michael
College
College of Engineering and Computer Science
Publisher
University of Tennessee at Chattanooga
Place of Publication
Chattanooga (Tenn.)
Abstract
With the rise in the number of devices in the Internet of Things (IoT), the number of malicious devices will also drastically increase. Smart cities' decisions are based on data being collected by IoT devices in real-time, of which a connected-vehicle system is included. Behaviors such as malicious data injection can significantly impact connected vehicles. To aid in combating this threat, monitoring smart city and connected vehicle's sensor data will allow for construction of a behavioral model. Implementing machine learning will aid in constructing a standard behavior such that any device that begins to malfunction or behave maliciously can be detected and mitigated in real-time. This behavioral analysis will be further applied to supplement trust management approaches such that a more accurate value can be associated with the device's perceived trustworthiness without the need to rely on a majority consensus.
Degree
M. S.; A thesis submitted to the faculty of the University of Tennessee at Chattanooga in partial fulfillment of the requirements of the degree of Master of Science.
Date
8-2020
Subject
Computer security; Internet of things; Machine learning; Smart cities; Vehicular ad hoc networks (Computer networks)
Document Type
Masters theses
DCMI Type
Text
Extent
x, 79 leaves
Language
English
Rights
http://rightsstatements.org/vocab/InC/1.0/
License
http://creativecommons.org/licenses/by/4.0/
Recommended Citation
Huber, Brennan, "Behavioral model based trust management design for IoT at scale" (2020). Masters Theses and Doctoral Dissertations.
https://scholar.utc.edu/theses/675
Brennan-Committee.pdf (185 kB)
Brennan-Verifications.pdf (168 kB)
Brennan-GradDegreeExamForm.pdf (213 kB)
2020___Behavioral_Model_Thesis.pdf (2954 kB)
2020___Behavioral_Model_Thesis(1).pdf (2956 kB)
Department
Dept. of Computer Science and Engineering