Committee Chair
Liang, Yu
Committee Member
Wu, Dalei; Hogg, Jennifer
College
College of Engineering and Computer Science
Publisher
University of Tennessee at Chattanooga
Place of Publication
Chattanooga (Tenn.)
Abstract
Athlete performance scoring within climbing presents interesting challenges as the sport does not have an objective way to assign skill. Assessing skill level is valuable as it can be used to mark training progress and help an athlete choose appropriate climbs to attempt. Machine learning-based methods are popular for complex problems like this. The dataset available was composed of dynamic force data recorded during climbing; however, this dataset came with challenges such as data scarcity, imbalance, and it was temporally heterogeneous. Investigated solutions to these challenges include data augmentation, temporal normalization, conversion of time series to the spectral domain, and cross validation strategies. Solutions to the classification problem included light-weight machine classifiers KNN and SVM as well as the deep learning with CNN. The best performing model had an 80% accuracy. In conclusion, there seems to be enough information within climbing force data to accurately categorize climbers by skill.
Acknowledgments
I would like to give a special thank you to Mr. Benjamin Spannuth for collecting the climbing data used throughout this study and allowing me to use it. Furthermore, I would like to thank my advisors, Dr. Liang and Dr. Wu, for offering me guidance during my time in the graduate program. Thank you Dr. Jennifer Hogg for allowing me to work on one of your projects and helping me with mine. Thank you Dr. Kimberly Carter for helping to keep my tenses straight and fixing all of my other grammatical problems.
Degree
M. S.; A thesis submitted to the faculty of the University of Tennessee at Chattanooga in partial fulfillment of the requirements of the degree of Master of Science.
Date
5-2022
Subject
Data sets; Machine learning; Rock climbing
Document Type
Masters theses
DCMI Type
Text
Extent
x, 33 leaves
Language
English
Rights
http://rightsstatements.org/vocab/InC/1.0/
License
http://creativecommons.org/licenses/by/4.0/
Recommended Citation
Milburn, Nicholas, "Machine learning-enabled classification of climbers using small data" (2022). Masters Theses and Doctoral Dissertations.
https://scholar.utc.edu/theses/754
Department
Dept. of Computational Science